4.6 Article

Compressive, diametral tensile and biaxial flexural strength of cutting-edge calcium phosphate cements

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.jmbbm.2016.03.028

关键词

Calcium phosphate cement; Brushite; Apatite; Compressive strength; Tensile strength; Flexural strength

资金

  1. Swedish Foundation for International Cooperation in Research and Higher Education (STINT) [IG2011-2047]
  2. Swedish Research Council (VR) [621-2011-6258]
  3. China Scholarship Council (CSC)

向作者/读者索取更多资源

Calcium phosphate cements (CPCs) are widely used in bone repair. Currently there are two main types of CPCs, brushite and apatite. The aim of this project was to evaluate the mechanical properties of particularly promising experimental brushite and apatite formulations in comparison to commercially available brushite- and apatite-based cements (chronOS (TM) Inject and Norian (R) SRS (R), respectively), and in particular evaluate the diametral tensile strength and biaxial flexural strength of these cements in both wet and dry conditions for the first time. The cements' porosity and their compressive, diametral tensile and biaxial flexural strength were tested in wet (or moist) and dry conditions. The surface morphology was characterized by scanning electron microscopy. Phase composition was assessed with X-ray diffraction. It was found that the novel experimental cements showed better mechanical properties than the commercially available cements, in all loading scenarios. The highest compressive strength (57.2 +/- 6.5 MPa before drying and 69.5 +/- 6.0 MPa after drying) was found for the experimental brushite cement. This cement also showed the highest wet diametral tensile strength (10.0 +/- 0.8 MPa) and wet biaxial flexural strength (30.7 +/- 1.8 MPa). It was also the cement that presented the lowest porosity (approx. 12%). The influence of water content was found to depend on cement type, with some cements showing higher mechanical properties after drying and some no difference after drying. (C) 2016 The Authors. Published by Elsevier Ltd.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据