4.6 Article

A general framework for application of prestrain to computational models of biological materials

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.jmbbm.2016.04.012

关键词

Residual stress; In situ stress; Prestress; Finite element modeling; Inverse analysis; FEBio

资金

  1. NIH [R01GM083925, R01GM104139, R01EB015133]

向作者/读者索取更多资源

It is often important to include prestress in computational models of biological tissues. The prestress can represent residual stresses (stresses that exist after the tissue is excised from the body) or in situ stresses (stresses that exist in vivo, in the absence of loading). A prestressed reference configuration may also be needed when modeling the reference geometry of biological tissues in vivo. This research developed a general framework for representing prestress in finite element models of biological materials. It is assumed that the material is elastic, allowing the prestress to be represented via a prestrain. For prestrain fields that are not compatible with the reference geometry, the computational framework provides an iterative algorithm for updating the prestrain until equilibrium is satisfied. The iterative framework allows for enforcement of two different constraints: elimination of distortion in order to address the incompatibility issue, and enforcing a specified in situ fiber strain field while allowing for distortion. The framework was implemented as a plugin in FEBio (www.febio.org), making it easy to maintain the software and to extend the framework if needed. Several examples illustrate the application and effectiveness of the approach, including the application of in situ strains to ligaments in the Open Knee model (simtk.org/home/openknee). A novel method for recovering the stress free configuration from the prestrain deformation gradient is also presented. This general purpose theoretical and computational framework for applying prestrain will allow analysts to overcome the challenges in modeling this important aspect of biological tissue mechanics. (C) 2016 Published by Elsevier Ltd.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据