4.7 Article

Emerging Phosphate-Functionalized Co3O4/Kaolinite Composites for Enhanced Activation of Peroxymonosulfate

期刊

INORGANIC CHEMISTRY
卷 62, 期 12, 页码 4823-4834

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.inorgchem.2c04059

关键词

-

向作者/读者索取更多资源

In this study, phosphate-functionalized Co3O4/kaolinite (P-Co3O4/Kaol) catalysts were prepared and used for the degradation of environmental pollutants using peroxymonosulfate (PMS). The presence of phosphate enhanced the adsorption of PMS and the electron transfer of Co2+/Co3+ cycles, resulting in superior catalytic performance and stability of P-Co3O4/Kaol. Additionally, the ·OH radical was identified as the dominant reactive species for the degradation of Orange II. This work provides a novel preparation strategy for functionalized nanoclay-based catalysts for effective pollutant degradation.
The Fenton-like reaction, as one of the most efficient strategies to generate radical species for the degradation of environmental pollutants, has attracted considerable attention. However, engineering low-cost catalysts with excellent activity by phosphate surface functionalization has seldom been used for the activation of peroxymonosulfate (PMS). Herein, emerging phosphate-functionalized Co3O4/kaolinite (P-Co3O4/Kaol) catalysts have been prepared by hydrothermal and phosphorization. Kaolinite nanoclay with rich hydroxyl groups plays a vital role in realizing phosphate functionalization. The results indicate that P-Co3O4/Kaol shows superior catalytic performance and excellent stability to the degradation of Orange II, which could be attributed to the existence of phosphate that promotes the adsorption of PMS and the electron transfer of Co2+/Co3+ cycles. Furthermore, the center dot OH radical was identified as the dominating reactive species for the degradation of Orange II compared to the SO4 center dot- radical. This work could offer a novel preparation strategy for emerging functionalized nanoclay-based catalysts for effective pollutant degradation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据