4.7 Article

Hydrogenation of Carbon Dioxide to Formate by Noble Metal Catalysts Supported on a Chemically Stable Lanthanum Rod-Metal-Organic Framework

期刊

INORGANIC CHEMISTRY
卷 62, 期 23, 页码 9077-9088

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.inorgchem.3c00884

关键词

-

向作者/读者索取更多资源

By using the La-MOF JMS-5 with a bipyridyl dicarboxylate linker and cyclometalation with platinum-group metals, catalytic hydrogenation of carbon dioxide to formate was achieved with high TON values for Ir-(III) and Rh-(III) without nanoparticle formation. The MOF showed an unusual rod topology and was fully characterized. The conversion of carbon dioxide to formate is important for hydrogen storage and accessing olefins.
Cyclometalated with platinum-groupmetals, the La-MOF JMS-5with a bipyridyl dicarboxylate linker gave a TON of over 5000 forIr-(III) and over 4000 for Rh-(III) in the catalytic hydrogenation ofcarbon dioxide to formate without any signs of nanoparticles. Fullcharacterization was performed including XPS, TEM, PXRD, and gas sorption.Single crystal diffraction revealed an unusual rod-MOF topology. The conversion of carbon dioxide to formate is of greatimportancefor hydrogen storage as well as being a step to access an array ofolefins. Herein, we have prepared a JMS-5 metal-organic framework(MOF) using a bipyridyl dicarboxylate linker, with the molecular formula[La-2(bpdc)(3/2)(dmf)(2)(OAc)(3)]center dot dmf. The MOF was functionalized by cyclometalation using Pd-(II),Pt-(II), Ru-(II), Rh-(III), and Ir-(III) complexes. All metal catalystssupported on JMS-5 showed activity for CO2 hydrogenationto formate, with Rh-(III)@JMS-5a and Ir-(III)@JMS-5a yielding 4319 and5473 TON, respectively. X-ray photoelectron spectroscopy of the mostactive catalyst Ir-(III)@JMS-5a revealed that the iridium binding energiesshifted to lower values, consistent with formation of Ir-Hactive species during catalysis. The transmission electron microscopyimages of the recovered catalysts of Ir-(III)@JMS-5a and Rh-(III)@JMS-5adid not show any nanoparticles. This suggests that the catalytic activityobserved was due to Ir-(III) and Rh-(III). The high activity displayedby Ir-(III)@JMS-5a and Rh-(III)@JMS-5a compared to using the Ir-(III)and Rh-(III) complexes on their own is attributed to the stabilizationof the Ir-(III) and Rh-(III) on the nitrogen and carbon atom of theMOF backbone.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据