4.7 Article

Integrating Self-Partitioned Pore Space and Amine Functionality into an Aromatic-Rich Coordination Framework with Ph Stability for Effective Purification of C2 Hydrocarbons

期刊

INORGANIC CHEMISTRY
卷 62, 期 14, 页码 5593-5601

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.inorgchem.3c00154

关键词

-

向作者/读者索取更多资源

This study reports a cadmium-based metal-organic framework material, ZJNU-140, which has selective recognition ability and confinement effect towards C2 hydrocarbon molecules, showing promising potential for the adsorptive separation and purification of C2 hydrocarbons.
A great demand for high-purity C2 hydrocarbons calls for the development of chemically stable porous materials for the effective isolation of C2 hydrocarbons from CH4 and CO2. However, such separations are challenged by their similar physiochemical parameters and have not been systematically studied to date. In this work, we reported a cadmium-based rod-packing coordination framework compound ZJNU-140 of a new 5,6,7-c topology built up from a custom-designed tricarboxylate ligand. The metal-organic framework (MOF) features an aromatic-abundant pore surface, uncoordinated amine functionality, and self-partitioned pore space of suitable size. These structural characteristics act synergistically to provide the MOF with both selective recognition ability and the confinement effect toward C2 hydrocarbons. As a result, the MOF displays promising potential for adsorptive separation of C2-CH4 and C2-CO2 mixtures. The IAST-predicted C2/CH4 and C2/CO2 adsorption selectivities, respectively, fall in the ranges of 7.3-10.2 and 2.1-2.9 at 298 K and 109 kPa. The real separation performance was also confirmed by dynamic breakthrough experiments. In addition, the MOF can maintain skeleton intactness in aqueous solutions with a wide pH range of 3- 11, as confirmed by powder X-ray diffraction (PXRD) and isotherm measurements, showing no loss of framework integrity and porosity. The excellent hydrostability, considerable uptake capacity, impressive adsorption selectivity, and mild regeneration make ZJNU-140 a promising adsorbent material applied for the separation and purification of C2 hydrocarbons.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据