4.4 Article

A video drowning detection device based on underwater computer vision

期刊

IET IMAGE PROCESSING
卷 17, 期 6, 页码 1905-1918

出版社

WILEY
DOI: 10.1049/ipr2.12765

关键词

computer vision; object detection; real-time systems; unsupervised learning

向作者/读者索取更多资源

Drowning is a significant health concern, and there are challenges in detecting drowning victims due to lack of data, subtle traits, and real-time requirements. This paper proposes an underwater computer vision based drowning detection device to address these challenges.
Drowning is a significant public health concern. A video drowning detection algorithm is a helpful tool for finding drowning victims. However, there are three challenges that drowning detection research typically encounters: a lack of actual drowning video data, subtle early drowning traits, and a lack of real time. In this paper, the authors propose an underwater computer vision based drowning detection device composed of embedded AI devices, camera, and waterproof case to solve the above problems. The detection device utilizes the high-performance computing of Jetson Nano to realize real-time detection of drowning events through the proposed drowning detection algorithm on the acquired underwater video stream. The proposed drowning detection algorithm primarily consists of two stages: in the first step, to successfully solve the interference of the surroundings and to give a trustworthy basis for video drowning detection, the YOLOv5n network is used to detect the near-vertical human body based on the characteristics of the drowning person. In the second stage, the authors propose a lightweight drowning detection network (DDN) based on a deep Gaussian model for fast feature vector detection. The lightweight DDN is combined with the Gaussian model to detect anomaly in the high-level semantic features, which has higher robustness and solves the lack of drowning videos. The experimental results show that the proposed drowning detection algorithm has good comprehensive performance and practical application value.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据