4.4 Article

Malignant melanoma dermoscopy image classification method based on multi-modal medical features

期刊

IET IMAGE PROCESSING
卷 17, 期 9, 页码 2611-2627

出版社

WILEY
DOI: 10.1049/ipr2.12801

关键词

image classification; feature extraction; medical image processing

向作者/读者索取更多资源

This paper proposes a method for the classification of malignant melanoma dermoscopy images based on multi-modal medical features, which can reduce the classification error caused by the complexity and subjectivity of visual interpretation and assist dermatologists in analyzing the skin lesion area.
Skin cancer is one of the deadliest cancers, and it has been widely developed worldwide since the last decade. Malignant melanoma is currently the most deadly skin cancer. If malignant melanoma is diagnosed at an early stage, the probability of patients being cured will be greatly improved. At present, most existing skin lesion image classification methods only use deep learning. However, the multi-modal features of skin lesions in the medical domain are not well utilized and integrated. To reduce the classification error of the skin lesion images caused by the complexity and subjectivity of visual interpretation, a malignant melanoma dermoscopy image classification method based on multi-modal medical features is proposed in this paper which is inspired by the fuzzy decision-making process of doctors. It can reduce the subjective difference in the image classification process and assist dermatologists to analyze the skin lesion area. Firstly, the feature detection method based on the extension theory can effectively quantify the difference between different colour features. Then, an interpretable segmentation edge of the skin lesion is established by using the neutrosophic theory which can convert the image into the neutrosophic space. The edge of the skin lesion is captured by applying the Hierarchical Gaussian Mixture Model (HGMM) method. Next, the edge sequence is established by segmenting the edge, and the contour regularity, symmetry, and uniformity of the edge of the skin lesion are analyzed. Finally, the extracted multi-feature sets are used for dermoscopy image classification. Experiments are carried out on real datasets, and the classification accuracy of four kernel functions is verified. The experimental results show that the authors' method can effectively improve the classification accuracy of benign dermoscopy images and malignant dermoscopy images.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据