4.1 Article

Numerical analysis on the effect of angle of attack on evaluating radio-frequency blackout in atmospheric reentry

期刊

JOURNAL OF THE KOREAN PHYSICAL SOCIETY
卷 68, 期 11, 页码 1295-1306

出版社

KOREAN PHYSICAL SOC
DOI: 10.3938/jkps.68.1295

关键词

Atmospheric reentry; Radio-frequency blackout; Angle of attack; Plasma flow simulation

向作者/读者索取更多资源

A three-dimensional numerical simulation model that considers the effect of the angle of attack was developed to evaluate plasma flows around reentry vehicles. In this simulation model, thermochemical nonequilibrium of flowfields is considered by using a four-temperature model for high-accuracy simulations. Numerical simulations were performed for the orbital reentry experiment of the Japan Aerospace Exploration Agency, and the results were compared with experimental data to validate the simulation model. A comparison of measured and predicted results showed good agreement. Moreover, to evaluate the effect of the angle of attack, we performed numerical simulations around the Atmospheric Reentry Demonstrator of the European Space Agency by using an axisymmetric model and a three-dimensional model. Although there were no differences in the flowfields in the shock layer between the results of the axisymmetric and the three-dimensional models, the formation of the electron number density, which is an important parameter in evaluating radio-frequency blackout, was greatly changed in the wake region when a non-zero angle of attack was considered. Additionally, the number of altitudes at which radio-frequency blackout was predicted in the numerical simulations declined when using the three-dimensional model for considering the angle of attack.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.1
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据