4.7 Article

SPPPred: Sequence-Based Protein-Peptide Binding Residue Prediction Using Genetic Programming and Ensemble Learning

出版社

IEEE COMPUTER SOC
DOI: 10.1109/TCBB.2022.3230540

关键词

Proteins; Feature extraction; Prediction algorithms; Classification algorithms; Support vector machines; Amino acids; Peptides; Binding residue prediction; ensemble learning; genetic programming; protein-peptide interaction; sequence-based

向作者/读者索取更多资源

Peptide-binding proteins play important roles in various applications. SPPPred is a novel ensemble machine learning-based approach that can predict protein-peptide binding residues with consistent and comparable performance.
Peptide-binding proteins play significant roles in various applications such as gene expression, metabolism, signal transmission, DNA (Deoxyribose Nucleic Acid) repair, and replication. Investigating the binding residues in protein-peptide complexes, especially from their sequence only, is challenging experimentally and computationally. Although several computational approaches have been introduced to determine and predict these binding residues, there is still ample room to improve the prediction performance. In this work, we introduce a novel ensemble machine learning-based approach called SPPPred (Sequence-based Protein-Peptide binding residue Prediction) to predict protein-peptide binding residues. First, we extract relevant sequential information and employ genetic programming algorithm for feature construction to find more distinctive features. We then, in the next step, build an ensemble-based machine learning classifier to predict binding residues. The proposed method shows consistent and comparable performance on both ten-fold cross-validation and independent test set. Furthermore, SPPPred yields F-Measure (F-M), Accuracy(ACC), and Matthews' Correlation Coefficient (MCC) of 0.310, 0.949, and 0.230 on the independent test set, respectively, which outperforms other competing methods by approximately up to 9% on the independent test set. SPPPred is publicly available https://github.com/GTaherzadeh/SPPPred.git.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据