4.7 Article

Deep Neural Networks for Direction of Arrival Estimation of Multiple Targets With Sparse Prior for Line-of-Sight Scenarios

期刊

IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY
卷 72, 期 4, 页码 4683-4696

出版社

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TVT.2022.3224586

关键词

Direction-of-arrival estimation; Antenna arrays; Estimation; Receiving antennas; Costs; Deep learning; Covariance matrices; DOA estimation; deep neural network; sparse representation; multiple targets

向作者/读者索取更多资源

Received signal Direction of Arrival (DOA) estimation is a significant problem with wide-ranging applications. Current approaches struggle to separate closely located transmitters without using a large number of antennas, resulting in higher costs. In this paper, we propose a deep learning framework that can estimate DOA under Line-of-Sight scenarios, distinguishing more closely located sources than the number of receiver's antennas. Our approach reduces hardware complexity compared to state-of-the-art solutions and performs well in demanding scenarios with low SNR and limited snapshots.
Received signal Direction of Arrival (DOA) estimation represents a significant problem with multiple applications, ranging from wireless communications to radars. This problem presents significant challenges, mainly given by a large number of closely located transmitters being difficultly separable. Currently available state of the art approaches fail in providing sufficient resolution to separate and recognize the DOA of closely located transmitters, unless using a large number of antennas and hence increasing the deployment and operation costs. In this paper, we present a deep learning framework for DOA estimation under Line-of-Sight scenarios, which able to distinguish a number of closely located sources higher than the number of receivers' antennas. We first propose a formulation that maps the received signal to a higher dimensional space that allows for better identification of signal sources. Secondly, we introduce a Deep Neural Network that learns the mapping from the receiver antenna space to the extended space to avoid relying on specific receiver antenna array structures. Thanks to our approach, we reduce the hardware complexity compared to state of the art solutions and allow reconfigurability of the receiver channels. Via extensive numerical simulations, we demonstrate the superiority of our proposed method compared to state-of-the-art deep learning-based DOA estimation methods, especially in demanding scenarios with low Signal-to-Noise Ratio and limited number of snapshots.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据