4.7 Article

Semi-Supervised Dual Stream Segmentation Network for Fundus Lesion Segmentation

期刊

IEEE TRANSACTIONS ON MEDICAL IMAGING
卷 42, 期 3, 页码 713-725

出版社

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TMI.2022.3215580

关键词

Image segmentation; Retina; Lesions; Feature extraction; Fuses; Streaming media; Training; Semi-supervised learning; generative adversarial network; fundus fluorescein angiography; optical coherence tomography

向作者/读者索取更多资源

In this paper, a new segmentation strategy called a dual stream segmentation network embedded into a conditional generative adversarial network is proposed to improve the accuracy of retinal lesion segmentation. The proposed method is cross-validated in 384 clinical fundus fluorescein angiography images and 1040 optical coherence tomography images. Compared to state-of-the-art methods, the proposed method can achieve better segmentation of retinal capillary non-perfusion region and choroidal neovascularization.
Accurate segmentation of retinal images can assist ophthalmologists to determine the degree of retinopathy and diagnose other systemic diseases. However, the structure of the retina is complex, and different anatomical structures often affect the segmentation of fundus lesions. In this paper, a new segmentation strategy called a dual stream segmentation network embedded into a conditional generative adversarial network is proposed to improve the accuracy of retinal lesion segmentation. First, a dual stream encoder is proposed to utilize the capabilities of two different networks and extract more feature information. Second, a multiple level fuse block is proposed to decode the richer and more effective features from the two different parallel encoders. Third, the proposed network is further trained in a semi-supervised adversarial manner to leverage from labeled images and unlabeled images with high confident pseudo labels, which are selected by the dual stream Bayesian segmentation network. An annotation discriminator is further proposed to reduce the negativity that prediction tends to become increasingly similar to the inaccurate predictions of unlabeled images. The proposed method is cross-validated in 384 clinical fundus fluorescein angiography images and 1040 optical coherence tomography images. Compared to state-of-the-art methods, the proposed method can achieve better segmentation of retinal capillary non-perfusion region and choroidal neovascularization.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据