4.6 Review

Synchronized multidecadal trends and regime shifts in North Atlantic plankton populations

期刊

ICES JOURNAL OF MARINE SCIENCE
卷 -, 期 -, 页码 -

出版社

OXFORD UNIV PRESS
DOI: 10.1093/icesjms/fsad095

关键词

climate; extreme events; North Atlantic; plankton; regime shift

向作者/读者索取更多资源

Recent changes in oceanic plankton are occurring at unprecedented rates, primarily driven by environmental factors including climate change. These shifts involve both trends and cycles, as well as system shifts synchronized over large spatial scales. Observational series in the North Atlantic have identified two main periods of significant plankton shifts, with synchronization suggesting responses to warming and large-scale climatic factors. Changes in species abundance and distribution patterns are influenced by hydrographic factors and the nonlinear effects of warming, particularly for species near their thermal limits. These changes are attributed to trade-offs between different biological strategies.
Recent changes in oceanic plankton are being reported at unprecedented rates. Most changes are related to environmental factors, and many were identified as driven by climate, either through natural cycles or by anthropogenic effects. However, the separation of both effects is difficult because of the short length of most observational series. Moreover, some changes are related to trends and cycles, while others were perceived as system shifts, often synchronized over large spatial scales. Here, studies on observational series of plankton, with the focus in the North Atlantic, are reviewed. Two main periods of shifts in plankton assemblages were identified: one in the late 1980s and a more recent one at the beginning of the new millennium. While the origin and extent of most shifts varied locally, their synchronization seems to confirm the response of plankton to changes in warming and in large-scale climatic factors. Changes in species abundance and distribution patterns were generally related to hydrographic factors, but also to non-linear effects of warming, the latter particularly affecting species in regions near the limits of their thermal niches. Indeed, most of the changes were attributed to trade-offs between different biological strategies. Taken together, the reviewed case studies indicate a lagged biological response to variations in the local environment driven by large-scale climate forcing. The challenges for interpreting future shifts include considering local changes within a larger geographical area, variations in species life traits, and potential top-down effects of plankton predators.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据