4.1 Article

MiRNA-494 induces trophoblast senescence by targeting SIRT1

期刊

HYPERTENSION IN PREGNANCY
卷 42, 期 1, 页码 -

出版社

TAYLOR & FRANCIS INC
DOI: 10.1080/10641955.2023.2219774

关键词

Preeclampsia; SIRT1; MiRNA-494; cellular senescence

向作者/读者索取更多资源

This study investigated the role of the miR-494/SIRT1 axis in preeclampsia (PE) and found that SIRT1 expression was decreased and miR-494 expression was increased in PE patients. Premature placental aging was observed in PE patients. Experimental validation confirmed the targeting relationship between miR-494 and SIRT1. Overexpression of miR-494 resulted in cell senescence, impaired migration, decreased ATP synthesis, increased ROS levels, and upregulated expression of inflammatory molecules, while overexpression of SIRT1 partially reversed these effects.
Objective Although the mechanism underlying preeclampsia (PE) has been widely explored, the mechanisms related to senescence have not yet been fully revealed. Therefore, we investigated the role of the miR-494/longevity protein Sirtuin 1 (SIRT1) axis in PE. Methods Human placental tissue was obtained from severe preeclampsia (SPE) (n = 20) and gestational age-matched normotensive pregnancies (n = 20), and senescence-associated beta-galactosidase (SA beta G) and SIRT1 expression levels were measured. The TargetScan and miRDB databases predicted candidate miRNAs targeting SIRT1, and intersected with differentially expressed miRNAs in the GSE15789 dataset (p < 0.05, |log(2)FC|>= 1.5). Subsequently, we showed that miRNA (miR)-494 expression was significantly elevated in SPE, revealing miR-494 as a candidate SIRT1-binding miRNA. A dual-luciferase assay confirmed the targeting relationship between miR-494 and SIRT1. The senescence phenotype, migration, cell viability, reactive oxygen species (ROS) production levels and inflammatory molecule expression levels were measured after miR-494 expression was altered. We conducted a rescue experiment using SIRT1 plasmids to further demonstrate the regulatory relationship. Results SIRT1 expression was lower(p < 0.01) and miR-494 expression was higher (p < 0.001) in SPE, and Sa beta G staining showed premature placental aging in SPE (p < 0.001). Dual-luciferase reporter assays revealed that miR-494 targeted SIRT1. Compared to control cells, HTR-8/SVneo cells with upregulation of miR-494 had remarkably downregulated SIRT1 expression (p < 0.001), more SA beta G-positive cells (p < 0.001), cell cycle arrested (p < 0.05), and upregulated P21 and P16 expression (p < 0.01). miR-494 overexpression also decreased HTR-8/SVneo cell migration (p < 0.05) and ATP synthesis (p < 0.001), increased ROS levels (p < 0.001), and upregulated NLRP3 and IL-1 beta expression (p < 0.01). SIRT1-overexpressing plasmids partially reversed the effects of miR-494 overexpression in HTR-8/SVneo cells. Conclusion The miR-494/SIRT1 interaction plays a role in the mechanism of premature placental aging in PE patients.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.1
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据