4.6 Article

End-Permian terrestrial ecosystem collapse in North China: Evidence from palynology and geochemistry

期刊

GLOBAL AND PLANETARY CHANGE
卷 222, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.gloplacha.2023.104070

关键词

Permian-Triassic mass extinction; End-Permian terrestrial ecosystem collapse; Palynology; Charcoal; Extinction

向作者/读者索取更多资源

The Permian-Triassic Mass Extinction (PTME) was the most severe biocrisis in history, affecting both ocean and land ecosystems. In the North China Plate (NCP), there was a collapse of terrestrial ecosystems prior to the extinction, possibly triggered by wildfires induced by global warming.
The Permian-Triassic Mass Extinction (ca. 252 Ma; PTME) is the most severe biocrisis of the Phanerozoic in both the oceans and on land. The crisis saw the collapse of terrestrial ecosystems in low, mid and high latitudes. Although terrestrial plant losses have been implicated as a driver of concurrent changes in terrestrial sedimentary environments and facies (e.g., fluvial style and/or grain size), the relationship between extinction and envi-ronmental change in the North China Plate (NCP) remains uncertain due to a paucity of plant macrofossils. We explore the relationship between terrestrial environments and changes in plant communities using a combination of sedimentology, palynology, geochemistry, mineralogy and charcoal data from a terrestrial succession in the Yiyang Coalfield located in the southern NCP. Our multiproxy approach places the end-Permian Terrestrial Collapse (EPTC) at the base of bed 20, below the level of the main (marine) PTME at the top of bed 21. The EPTC manifested as a rapid loss of vegetation accompanied by climatic warming and frequent wildfires. The main PTME was accompanied by warming, spikes in the Chemical Index of Alteration (corrected CIA, CIA*) and sedimentary Ni (Ni/Al) concentrations, and a transition from arid floodplain to fluvial facies in the sedimentary record. Our results reveal a rapid increase in charcoal content, rapid decline of spore-pollen content, disap-pearance of plant macro-fossils, rapid decline in TOC content, the onset of a negative delta 13Corg excursion, and a shift in lithology from grayish-green sandstone and mudstone to purplish-red mudstone, suggesting that wildfires induced by global warming during the early eruption phase of the Siberian Traps Large Igneous Province trig-gered terrestrial ecosystem collapse in the NCP prior to the PTME. Plant extinctions during the EPTC were accompanied by changes in sedimentology and environment, but there was no abrupt change in fluvial styles. Temporal coincidence suggests that shifts in end-Permian terrestrial ecosystems toward those tolerant of warmer and more environmentally stressed environments were driven by concurrent Siberian Traps volcanism.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据