4.7 Article

Collaborative multiple change detection methods for monitoring the spatio-temporal dynamics of mangroves in Beibu Gulf, China

期刊

GISCIENCE & REMOTE SENSING
卷 60, 期 1, 页码 -

出版社

TAYLOR & FRANCIS LTD
DOI: 10.1080/15481603.2023.2202506

关键词

Mangrove dynamics; time-series spectral indices; DMP framework; Beibu gulf; Google earth engine

向作者/读者索取更多资源

This study proposes the detect-monitor-predict (DMP) framework to track spatio-temporal changes and predict future trends of mangroves in Beibu Gulf, China, using multiple detection change algorithms. The study develops a method for extracting mangroves from multi-source inter-annual time-series spectral indices images and confirms its accuracy. The study reveals historical changes and predicts future growth conditions of mangroves in the Beibu Gulf.
Mangrove ecosystems are one of the most diverse and productive marine ecosystems around the world, although losses of global mangrove area have been occurring over the past decades. Therefore, tracking spatio-temporal changes and assessing the current state are essential for mangroves conservation. To solve the issues of inaccurate detection results of single algorithms and those limited to historical change detection, this study proposes the detect-monitor-predict (DMP) framework of mangroves for detecting time-series historical changes, monitoring abrupt near-real-time events, and predicting future trends in Beibu Gulf, China, through the synergetic use of multiple detection change algorithms. This study further developed a method for extracting mangroves using multi-source inter-annual time-series spectral indices images, and evaluated the performance of twenty-one spectral indices for capturing expansion events of mangroves. Finally, this study reveals the spatio-temporal dynamics of mangroves in Beibu Gulf from 1986 to 2021. In this study, we found that our method could extract mangrove growth regions from 1986 to 2021, and achieved 0.887 overall accuracy, which proved that this method is able to rapidly extract large-scale mangroves without field-based samples. We confirmed that the normalized difference vegetation index and tasseled cap angle outperform other spectral indexes in capturing mangrove expansion changes, while enhanced vegetation index and soil-adjusted vegetation index capture the change events with a time delay. This study revealed that mangrove changes displayed historical changes in the hierarchical gradient from land to sea with an average annual expansion of 239.822 ha in the Beibu Gulf during 1986-2021, detected slight improvements and deteriorations of some contemporary mangroves, and predicted 72.778% of mangroves with good growth conditions in the future.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据