4.7 Article

Role of the proline-rich disordered domain of DROSHA in intronic microRNA processing

期刊

GENES & DEVELOPMENT
卷 37, 期 9-10, 页码 383-397

出版社

COLD SPRING HARBOR LAB PRESS, PUBLICATIONS DEPT
DOI: 10.1101/gad.350275.122

关键词

DROSHA; disordered domain; intron; microRNA; proline-rich domain

向作者/读者索取更多资源

In this study, the researchers explore the role of the N-terminal proline-rich disordered domain (PRD) of DROSHA in miRNA processing. They find that the PRD specifically promotes the maturation of intronic miRNAs, independent of splicing reactions. They also discover that PRD is more important for rapidly evolving miRNAs, suggesting a role in miRNA evolution.
DROSHA serves as a gatekeeper of the microRNA (miRNA) pathway by processing primary transcripts (pri-miRNAs). While the functions of structured domains of DROSHA have been well documented, the contribution of N-terminal proline-rich disordered domain (PRD) remains elusive. Here we show that the PRD promotes the processing of miRNA hairpins located within introns. We identified a DROSHA isoform (p140) lacking the PRD, which is produced by proteolytic cleavage. Small RNA sequencing revealed that p140 is significantly impaired in the maturation of intronic miRNAs. Consistently, our minigene constructs demonstrated that PRD enhances the processing of intronic hairpins, but not those in exons. Splice site mutations did not affect the PRD's enhancing effect on intronic constructs, suggesting that the PRD acts independently of splicing reaction by interacting with sequences residing within introns. The N-terminal regions from zebrafish and Xenopus DROSHA can replace the human counterpart, indicating functional conservation despite poor sequence alignment. Moreover, we found that rapidly evolving intronic miRNAs are generally more dependent on PRD than conserved ones, suggesting a role of PRD in miRNA evolution. Our study reveals a new layer of miRNA regulation mediated by a low-complexity disordered domain that senses the genomic contexts of miRNA loci. In this study, Son et al. describe the functional and evolutionary significance of the N-terminal proline-rich disordered domain (PRD) of DROSHA, a key factor for miRNA processing. They show that the PRD preferentially facilitates the maturation of rapidly evolving, primary miRNA hairpins located within introns, thus providing new insights into regulation of miRNA biogenesis.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据