4.7 Article

Can body mass and skull morphology predict seed and fruit ingestion potential for mammal species? A test using extant species and its application to extinct species

期刊

FUNCTIONAL ECOLOGY
卷 37, 期 5, 页码 1504-1515

出版社

WILEY
DOI: 10.1111/1365-2435.14300

关键词

bats; body mass; carnivores; frugivores; primates; seed dispersal; skull; tropical forests

类别

向作者/读者索取更多资源

By studying skull dimensions and body weight in mammals, we found that body weight is a more reliable predictor for fruit and seed size, but skull dimensions can provide accurate predictions for seed ingestion and dispersal capacity in extinct species.
1. Larger animals are assumed to ingest larger seeds and consume larger fruits, but empirical studies reveal inconsistent trends between body mass and the average size of fruits and seeds ingested. Furthermore, no studies have explored seed size relationships with morphological traits, such as skull dimensions. Such characteristics might provide more reliable estimates of ingestion ability and allow for accurate predictions of seed dispersal capacity in species for which we lack empirical data, especially extinct species. To determine whether (i) mammalian skull dimensions are better predictors of the maximum size of ingested seeds and fruits, compared to body mass and (ii) body mass are the better predictors of mean fruit and seed sizes, we studied these relationships across three mammalian orders: Chiroptera, Primates and Carnivora. 2. We collected novel data on skull dimensions and collated available data on body mass and maximum and mean sizes of ingested fruits and seeds for mammals (N = 100) across the Neotropics, Asia, Africa and Madagascar. We explored the relationships between anatomical traits and fruit and seed sizes of extant species and made predictions for five extinct species. 3. Our results revealed that body mass and skull dimensions are essential determinants of ingested fruit and seed size in mammals. The latter traits can generate predictions for extinct species, especially coronoid height and maximum jaw gape. Nevertheless, body mass predicted larger ingested fruits and seeds than skull dimensions and explained a greater part of the variance for both maximum and mean sizes in our dataset. 4. Our results show how body mass and cranial anatomy constrain seed size and reinforce the importance of maintaining functional diversity in seed dispersers to maintain tropical forest structure. We also show that scientists can use morphological characteristics to predict the seed dispersal potential of extinct mammals allowing better inferences on past and future consequences of frugivore extinctions within tropical forests.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据