4.7 Article

In vitro and in vivo glycemic responses and antioxidant potency of acorn and chickpea fortified gluten-free breads

期刊

FOOD RESEARCH INTERNATIONAL
卷 166, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.foodres.2023.112579

关键词

In vitro digestion; In vivo glycemic index; Glycemic load; Antioxidants; Phenolic compounds; Ellagic acid; Gallic acid; Hydrolysable tannin

向作者/读者索取更多资源

Fortifying gluten-free breads with a mixture of acorn flour and chickpea flour significantly improves their nutritional quality and antioxidant potential, while reducing glycemic responses. The inclusion of these flours enhances the concentrations of bioactive compounds and increases antioxidant activities in the breads. The addition of acorn flour also reduces glucose release and improves the glycemic index and load of the breads.
Gluten-free (GF) breads, based on rice flour and corn starch (50:50), were fortified with a mixture of acorn flour (ACF) - chickpea flour (CPF) at 30% substitution level of corn starch (i.e., rice flour:corn starch:ACF-CPF 50:20:30) using different flour blends of ACF:CPF at weight ratios of 5:25, 7.5:22.5, 12.5:17.5, and 20:10 in order to improve the nutritional quality and antioxidant potential as well as the glycemic responses of the GF breads; a control GF bread with rice flour:corn starch 50:50 ratio was also prepared. ACF was richer in total phenolic content than CPF, whereas CPF was characterized by higher amounts of total tocopherols and lutein compared to ACF. For both ACF and CPF as well as the fortified breads, the most abundant phenolic compounds were gallic (GA) and ellagic (ELLA) acids as found by HPLC-DAD analysis, while a hydrolysable tannin, valoneic acid dilactone, was also identified and quantified by HPLC-DAD-ESI-MS in high amount in the ACF-GF bread having the highest level of ACF (ACF:CPF 20:10), even though it seemed to decompose during breadmaking, possibly into GA and ELLA. Therefore, the inclusion of these two raw materials as ingredients in GF bread formulations resulted in baked products with enhanced concentrations of such bioactive compounds and higher antioxidant activities, as indicated by three different assays (DPPH, ABTS and FRAP). The extent of glucose release, as evaluated by an in vitro enzymic assay, was negatively correlated (r = -0.96; p = 0.005) with the level of added ACF, and was significantly reduced for all ACF-CPF fortified products when compared with their nonfortified GF counterpart. Furthermore, the GF bread containing a flour mixture of ACP:CPF at a weight ratio of 7.5:22.5, was subjected to an in vivo intervention protocol to assess the glycemic response when consumed by 12 healthy volunteers; in this case, white wheat bread was used as reference food. The glycemic index (GI) of the fortified bread was significantly lower compared to the control GF bread (97.4 versus 159.2, respectively), which along with its lower amount of available carbohydrates and the higher level of dietary fibers, resulted in a significantly reduced glycemic load (7.8 versus 18.8 g per serving of 30 g). The present findings underlined the effectiveness of acorn and chickpea flours in improving the nutritional quality and glycemic responses of fortified GF breads with these flours.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据