4.7 Article

Advanced Oxidative Decontamination of Flax and Its Impacts on Storage

期刊

FOOD AND BIOPROCESS TECHNOLOGY
卷 -, 期 -, 页码 -

出版社

SPRINGER
DOI: 10.1007/s11947-023-03093-2

关键词

Linseed; Cleaning; Disinfect; Sanitize; Omega-3; PUFA

向作者/读者索取更多资源

The metabolic actions of storage fungi and other microorganisms can cause spoilage and post-harvest losses in agricultural commodities. This study applied advanced oxidative process (AOP) technology to reduce mould on flaxseed. The results showed that AOP treatment significantly reduced mould in yellow flaxseed without adverse effects on germination rate, fatty acid value and moisture content.
The metabolic actions of storage fungi and other microorganisms can cause spoilage and post-harvest losses in agricultural commodities, including flaxseed. These microbial contaminants are oxidized with hydroxyl radicals that are efficiently generated when ozone, hydrogen peroxide (H2O2) and ultraviolet (UV) light react in an advanced oxidative process (AOP). The present work explores what we believe is the first application of an AOP technology to reduce mould on whole brown and yellow flaxseed. The impact of AOP on storage and quality parameters was assessed by measuring the fatty acid value (FAV), germination rate, moisture content (MC) and visible mould growth after 12 weeks of storage at 30 degrees C and 75% relative humidity (RH). Under these conditions, the yellow decontaminated flaxseed showed a 31% decrease in the number of seeds with visible mould without any adverse effect on germination rate, FAV and MC. In contrast, the same AOP treatment created an insignificant decrease in mould in stored brown flaxseed, at the cost of decreasing the germination rate and increasing FAV. The adverse effects of AOP on brown flaxseed were not readily apparent but became measurable after storage. Moreover, Fourier transform infrared (FTIR) spectroscopy was utilized to explore the rationale behind the different reactions of flaxseed varieties to AOP. The corresponding results indicated that the tolerance of yellow flaxseed to AOP might be related to its richness in olefins. The authors believe that technologies that harness advanced oxidative processes open new horizons in decontamination beyond ozone alone and towards increasing the shelf life of various agri-food products.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据