4.5 Article

Metabolites, gene expression, and gut microbiota profiles suggest the putative mechanisms via which dietary creatine increases the serum taurine and g-ABA contents in Megalobrama amblycephala

期刊

FISH PHYSIOLOGY AND BIOCHEMISTRY
卷 -, 期 -, 页码 -

出版社

SPRINGER
DOI: 10.1007/s10695-023-01177-6

关键词

Creatine; Metabolite; Gene expression; Gut microbiota; Megalobrama amblycephala; Taurine; g-ABA

向作者/读者索取更多资源

A 90-day experiment was conducted to investigate the effects of creatine on growth performance, liver health, metabolites, and gut microbiota in Megalobrama amblycephala. The results showed that supplementing creatine and betaine together improved the feed conversion ratio and liver health. Dietary creatine altered the composition of gut microbiota and increased the content of taurine and gamma-aminobutyric acid in the serum.
A 90-day experiment was conducted to explore the effects of creatine on growth performance, liver health status, metabolites, and gut microbiota in Megalobrama amblycephala. There were 6 treatments as follows: control (CD, 29.41% carbohydrates), high carbohydrate (HCD, 38.14% carbohydrates), betaine (BET, 1.2% betaine + 39.76% carbohydrates), creatine 1 (CRE1, 0.5% creatine + 1.2% betaine + 39.29% carbohydrates), creatine 2 (CRE2, 1% creatine + 1.2% betaine + 39.50% carbohydrates), and creatine 3 (CRE3, 2% creatine + 1.2% betaine + 39.44% carbohydrates). The results showed that supplementing creatine and betaine together reduced the feed conversion ratio significantly (P < 0.05, compared to CD and HCD) and improved liver health (compared to HCD). Compared with the BET group, dietary creatine significantly increased the abundances of Firmicutes, Bacteroidota, ZOR0006, and Bacteroides and decreased the abundances of Proteobacteria, Fusobacteriota, Vibrio, Crenobacter, and Shewanella in the CRE1 group. Dietary creatine increased the content of taurine, arginine, ornithine, gamma-aminobutyric acid (g-ABA), and creatine (CRE1 vs. BET group) and the expression of creatine kinase (ck), sulfinoalanine decarboxylase (csad), guanidinoacetate N-methyltransferase (gamt), glycine amidinotransferase (gatm), agmatinase (agmat), diamine oxidase1 (aoc1), and glutamate decarboxylase (gad) in the CRE1 group. Overall, these results suggested that dietary supplementation of creatine (0.5-2%) did not affect the growth performance, but it altered the gut microbial composition at the phylum and genus levels, which might be beneficial to the gut health of M. amblycephala; dietary creatine also increased the serum content of taurine by enhancing the expressions of ck and csad and increased the serum content of g-ABA by enhancing the arginine content and the expressions of gatm, agmat, gad, and aoc1.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据