4.7 Article

Lung CT image synthesis using GANs

期刊

EXPERT SYSTEMS WITH APPLICATIONS
卷 215, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.eswa.2022.119350

关键词

Generative adversarial networks; Synthesized medical imaging; CT Lung images; Lung cancer

向作者/读者索取更多资源

Biomedical engineering is being explored as a potential application for machine learning in detecting and diagnosing pathologies, but acquiring relevant and high-quality medical datasets is challenging. Generative models, such as Pix2Pix and cCGAN, can generate synthetic images to augment training datasets. Quantitative measures and expert assessments were used to evaluate the quality and realism of the generated lung images in this study, which showed promising results.
Biomedical engineering has been targeted as a potential research candidate for machine learning applications, with the purpose of detecting or diagnosing pathologies. However, acquiring relevant, high-quality, and heterogeneous medical datasets is challenging due to privacy and security issues and the effort required to annotate the data. Generative models have recently gained a growing interest in the computer vision field due to their ability to increase dataset size by generating new high-quality samples from the initial set, which can be used as data augmentation of a training dataset. This study aimed to synthesize artificial lung images from corresponding positional and semantic annotations using two generative adversarial networks and databases of real computed tomography scans: the Pix2Pix approach that generates lung images from the lung segmentation maps; and the conditional generative adversarial network (cCGAN) approach that was implemented with additional semantic labels in the generation process. To evaluate the quality of the generated images, two quantitative measures were used: the domain-specific Frechet Inception Distance and Structural Similarity Index. Additionally, an expert assessment was performed to measure the capability to distinguish between real and generated images. The assessment performed shows the high quality of synthesized images, which was confirmed by the expert evaluation. This work represents an innovative application of GAN approaches for medical application taking into consideration the pathological findings in the CT images and the clinical evaluation to assess the realism of these features in the generated images.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据