4.2 Article

Synchronization and patterns in a memristive network in noisy electric field

期刊

EUROPEAN PHYSICAL JOURNAL B
卷 96, 期 6, 页码 -

出版社

SPRINGER
DOI: 10.1140/epjb/s10051-023-00549-4

关键词

-

向作者/读者索取更多资源

A simple neural circuit coupled by magnetic flux-controlled memristor is used to describe the electromagnetic effect and radiation on biological neurons. The effect of external electric field on biophysical neurons is identified by adding a charge-controlled memristor into a nonlinear circuit. The firing patterns of the memristive circuit can be adjusted by tuning the angular frequency of an external voltage source, and the physical field energy and equivalent Hamilton energy are dependent on the firing modes of neural activities. The exchange and propagation of field energy in clustered neurons is achieved by regulating the charge flow, and coupling intensity is controlled by the energy difference between adjacent neurons for perfect energy balance and saturation.
A simple neural circuit coupled by magnetic flux-controlled memristor (MFCM) can be controlled to describe the electromagnetic effect and radiation on biological neurons. In this paper, the effect of external electric field on biophysical neurons is identified by adding a charge-controlled memristor into a nonlinear circuit. This memristive circuit can present a variety of firing patterns by tuning the angular frequency of an external voltage source. As a result, the physical field energy in this neural circuit and its equivalent Hamilton energy for memristive neuron are dependent on the firing modes of neural activities. For clustered neurons, field energy is exchanged and propagated to obtain fast energy balance by regulating the charge flow in the chain network. Indeed, the growth of coupling intensity is controlled by the energy difference between adjacent neurons, and perfect energy balance keeps a saturation value for coupling intensity. The collective behaviors of memristive neurons in the chain network are adjusted by regulating the coupling intensity for the exchange of charges. In addition, noisy disturbance from external electric field is applied to study the synchronization stability and wave propagation in the network, and energy flow is estimated.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据