4.5 Article

Bimanual coupling is associated with left frontocentral network activity in a task-specific way

期刊

EUROPEAN JOURNAL OF NEUROSCIENCE
卷 58, 期 1, 页码 2315-2338

出版社

WILEY
DOI: 10.1111/ejn.16042

关键词

bimanual coordination; coherence; EEG; interhemispheric crosstalk

向作者/读者索取更多资源

During bimanual tasks, hands are not controlled individually but as a coupled system. This study used EEG to investigate the functional brain network characteristics in different coordination modes and found that task-specific coordination modes affect network activation and connectivity. Furthermore, left frontocentral regions play an important role in bimanual coordination.
When performing bimanual tasks, hands are typically not controlled individually but rather as a coupled system to achieve high spatiotemporal coordination. On a brain level, intrahemispheric and interhemispheric networks that control the left and right hand are necessary to exchange information between hemispheres and to couple movements. Behaviourally, coupling is, however, highly task-specific requiring, for example, to maintain a specific relative phase in cyclic tasks (e.g., inphase or antiphase) or to perform a role differentiated task where one hand is modulating and the other hands is stabilizing and needs to be kept as still as possible (e.g., holding a notepad and writing on it). In this study, we used electroencephalography to investigate functional brain network characteristics (task-related activation and connectivity) in bimanual force-control tasks with different coordination modes: inphase, antiphase and role-differentiated with the left- or right-hand stabilizing and the other hand manipulating. We aimed to examine (1) how network characteristics differ with respect to the coordination mode and (2) how they are related to the performance. Results revealed task-related differences in the overall activation and connectivity with role-differentiated tasks leading to higher desynchronization as compared to inphase and antiphase tasks. In addition, we showed that the strength of bimanual coupling is modulated task specifically through left-hemispheric networks including C3, FC3 and F3 electrodes. Results highlight the importance of the left frontocentral regions for bimanual coordination.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据