4.6 Article

Measuring Li+ Inventory Losses in LiCoO2/Graphite Cells Using Raman Microscopy

期刊

JOURNAL OF THE ELECTROCHEMICAL SOCIETY
卷 163, 期 6, 页码 A1036-A1041

出版社

ELECTROCHEMICAL SOC INC
DOI: 10.1149/2.1111606jes

关键词

-

资金

  1. U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000]

向作者/读者索取更多资源

The contribution from loss of Li+ inventory to capacity fade is described for slow rates (C/10) and long-term cycling (up to 80 cycles). It was found through electrochemical testing and ex-situ Raman analysis that at these slow rates, the entirety of capacity loss up to 80 cycles can be explained by loss of Li+ inventory in the cell. The Raman spectrum of LiCoO2 is sensitive to the state of lithiation and can therefore be leveraged to quantify the state of lithiation for individual particles. With these Raman derived estimates, the lithiation state of the cathode in the discharged state is compared to electrochemical data as a function of cycle number. High correlation is found between Raman quantifications of cycleable lithium and the capacity fade. Additionally, the linear relationship between discharge capacity and cell overpotential suggests that the loss of capacity stems from an impedance rise of the electrodes, which based on Li inventory losses, is caused by SEI formation and repair. (C) The Author(s) 2016. Published by ECS. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据