4.6 Article

Hypothesis-free discovery of novel cancer predictors using machine learning

期刊

出版社

WILEY
DOI: 10.1111/eci.14037

关键词

artificial intelligence; biomarkers; cancer incidence; machine learning; risk factors

向作者/读者索取更多资源

Cancer is a major cause of disease and death worldwide, and understanding the risk factors is crucial for prevention. This study used machine learning and statistical approaches to identify cancer risk factors from a large number of potential predictors. The findings suggest that besides smoking, older age and male sex, various personal characteristics, metabolic biomarkers, and physical measures are positively associated with cancer risk.
Background: Cancer is a leading cause of morbidity and mortality worldwide, and better understanding of the risk factors could enhance prevention.Methods: We conducted a hypothesis-free analysis combining machine learning and statistical approaches to identify cancer risk factors from 2828 potential predictors captured at baseline. There were 459,169 UK Biobank participants free from cancer at baseline and 48,671 new cancer cases during the 10-year follow-up. Logistic regression models adjusted for age, sex, ethnicity, education, material deprivation, smoking, alcohol intake, body mass index and skin colour (as a proxy for sun sensitivity) were used for obtaining adjusted odds ratios, with continuous predictors presented using quintiles (Q).Results: In addition to smoking, older age and male sex, positively associating features included several anthropometric characteristics, whole body water mass, pulse, hypertension and biomarkers such as urinary microalbumin (Q5 vs. Q1 OR 1.16, 95% CI = 1.13-1.19), C-reactive protein (Q5 vs. Q1 OR 1.20, 95% CI = 1.16-1.24) and red blood cell distribution width (Q5 vs. Q1 OR 1.18, 95% CI = 1.14-1.21), among others. High-density lipoprotein cholesterol (Q5 vs. Q1 OR 0.84, 95% CI = 0.81-0.87) and albumin (Q5 vs. Q1 OR 0.84, 95% CI = 0.81-0.87) were inversely associated with cancer. In sex-stratified analyses, higher testosterone increased the risk in females but not in males (Q5 vs. Q1 ORfemales 1.23, 95% CI = 1.17-1.30). Phosphate was associated with a lower risk in females but a higher risk in males (Q5 vs. Q1 ORfemales 0.94, 95% CI = 0.90-0.99 vs. ORmales 1.09, 95% CI 1.04-1.15).Conclusions: This hypothesis-free analysis suggests personal characteristics, metabolic biomarkers, physical measures and smoking as important predictors of cancer risk, with further studies needed to confirm causality and clinical relevance.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据