4.5 Article

The UHRF1 protein is a key regulator of retrotransposable elements and innate immune response to viral RNA in human cells

期刊

EPIGENETICS
卷 18, 期 1, 页码 -

出版社

TAYLOR & FRANCIS INC
DOI: 10.1080/15592294.2023.2216005

关键词

Epigenetics; DNA methylation; UHRF1; Retrotransposons; Virus

向作者/读者索取更多资源

While the importance of epigenetic mechanisms such as DNA methylation and histone modification in gene suppression is known, there is still limited understanding of their interplay. The UHRF1 protein has been shown to interact with both DNA methylation and repressive chromatin marks, but its primary function in humans was unclear. In this study, stable knockdowns of UHRF1 in human fibroblasts revealed a loss of DNA methylation across the entire genome, accompanied by the activation of genes involved in innate immune signaling due to the presence of viral RNA from retrotransposable elements.
While epigenetic mechanisms such as DNA methylation and histone modification are known to be important for gene suppression, relatively little is still understood about the interplay between these systems. The UHRF1 protein can interact with both DNA methylation and repressive chromatin marks, but its primary function in humans has been unclear. To determine what that was, we first established stable UHRF1 knockdowns (KD) in normal, immortalized human fibroblasts using targeting shRNA, since CRISPR knockouts (KO) were lethal. Although these showed a loss of DNA methylation across the whole genome, transcriptional changes were dominated by the activation of genes involved in innate immune signalling, consistent with the presence of viral RNA from retrotransposable elements (REs). We confirmed using mechanistic approaches that 1) REs were demethylated and transcriptionally activated; 2) this was accompanied by activation of interferons and interferon-stimulated genes and 3) the pathway was conserved across other adult cell types. Restoring UHRF1 in either transient or stable KD systems could abrogate RE reactivation and the interferon response. Notably, UHRF1 itself could also re-impose RE suppression independent of DNA methylation, but not if the protein contained point mutations affecting histone 3 with trimethylated lysine 9 (H3K9me3) binding. Our results therefore show for the first time that UHRF1 can act as a key regulator of retrotransposon silencing independent of DNA methylation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据