4.7 Article

Satellite-derived forest canopy greenness shows differential drought vulnerability of secondary forests compared to primary forests in Peru

期刊

ENVIRONMENTAL RESEARCH LETTERS
卷 18, 期 6, 页码 -

出版社

IOP Publishing Ltd
DOI: 10.1088/1748-9326/acc8ea

关键词

nature climate solutions; tropical forest greenness; secondary forests; drought; evapotranspiration; land surface temperature; climate response

向作者/读者索取更多资源

Understanding the greenness of tropical secondary forest canopies and their response to climate conditions is crucial for mitigating climate change, especially in the tropics where secondary forests act as significant carbon sinks and natural climate solutions. This study tested three hypotheses regarding canopy greenness and climatic pressures in primary and secondary forests in Peru. The results showed that secondary forests had higher annual and seasonal greenness changes compared to primary forests, indicating their higher productivity. However, secondary forests were also more vulnerable to prolonged drought. The most significant factors predicting greenness fluctuations in different forest types were land surface temperature and a plant water use index. These findings highlight the importance of considering tropical secondary forests in climate change mitigation efforts.
Understanding tropical secondary forest canopy greenness and responses to climatic conditions is important for climate change mitigation, particularly in the tropics where secondary forest growth is a substantial carbon sink and a promoted natural climate solution. We here test three hypotheses: (a) forest canopy greenness is higher in younger, secondary forests than in older, primary or mature forests, (b) secondary forests are more vulnerable to climatic pressures and (c) there are significant differences between forest types regarding primary-secondary canopy greenness and their differential responses to drought anomalies. To explore these relationships, we monitored wet and dry seasonal greenness from 2001 to 2020, estimated through the enhanced vegetation index (EVI), of Peruvian tropical dry, montane and lowland secondary forests and compared it to nearby primary forests. We developed predictive models of seasonal EVI using remotely sensed variables, including land surface temperature (LST), evapotranspiration (ET), potential evapotranspiration (PET), ratio of ET and PET (ETn), and the standard precipitation index (SPI). Overall, there was a higher change in annual and seasonal EVI for secondary forests compared to primary forests. However, primary forests maintained relatively stable EVI levels during the wet season despite drought anomalies. When decoupling forest type canopy greenness and drought response, primary forest greenness in dry and lowland ecosystems were temporally more stable. Secondary montane had a lower increase in greenness when drought anomalies held during different seasons. Stepwise multiple linear regression models indicated that LST and ETn, a plant water use index, were the most significant factors to predict greening fluctuations in dry and montane forest types. ET and SPI mostly drove wet season mean EVI across all forest types. Predictors of dry season mean EVI varied, but mostly including water availability. Our results suggest that tropical secondary forests are more productive overall yet more vulnerable to prolonged drought.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据