4.7 Article

Mammalian carcass decay increases carbon storage and temporal turnover of carbon-fixing microbes in alpine meadow soil

期刊

ENVIRONMENTAL RESEARCH
卷 225, 期 -, 页码 -

出版社

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.envres.2023.115653

关键词

Carcass decomposition; Carbon-fixing microbes; Time-decay relationship; Network analysis

向作者/读者索取更多资源

This research investigates the effects of wild animal carcass decay on soil carbon storage and carbon-fixing microbial community. The results show that the decomposition of animal cadavers alters the carbon-fixing microbiota structure and increases the concentration of total carbon in grassland soil, indicating its significance in the carbon cycle of natural ecosystem.
Corpse decomposition is of great significance to the carbon cycle of natural ecosystem. Carbon fixation is a carbon conversion process that converts carbon dioxide into organic carbon, which greatly contributes to carbon emission reduction. However, the effects of wild animal carcass decay on carbon-fixing microbes in grassland soil environment are still unknown. In this research, thirty wild mammal (Ochotona curzoniae) corpses were placed on alpine meadow soil to study the carbon storage and carbon-fixing microbiota succession for a 94-day decomposition using next-generation sequencing. Our results revealed that 1) the concentration of total car -bon increased approximately 2.24-11.22% in the corpse group. 2) Several carbon-fixing bacterial species (Cal-othrix parietina, Ancylobacter rudongensis, Rhodopseudomonas palustris) may predict the concentration of total carbon. 3) Animal cadaver degradation caused the differentiation of carbon-fixing microbiota structures during succession and made the medium-stage networks of carbon-fixing microbes more complicated. 4) The temporal turnover rate in the experimental groups was higher than that in the control groups, indicating a quick change of gravesoil carbon-fixing microbiota. 5) The deterministic process dominates the assembly mechanism of experi-mental groups (ranging from 53.42% to 94.94%), which reflects that the carbon-fixing microbial community in gravesoil can be regulated. Under global climate change, this study provides a new perspective for understanding the effects of wild animal carcass decay on soil carbon storage and carbon-fixing microbes.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据