4.7 Article

Bioengineered microbial strains for detoxification of toxic environmental pollutants

期刊

ENVIRONMENTAL RESEARCH
卷 227, 期 -, 页码 -

出版社

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.envres.2023.115665

关键词

Soil pollutants; Microbial degradation; Bioremediation; Quorum sensing; Microbiome engineering; Microfluidics; Genetic engineering

向作者/读者索取更多资源

Industrialization and other human activities pose significant environmental risks, but bioremediation using microbes or their active metabolites is a successful approach to remove hazardous compounds. Restoring soil health is critical, and genetically modified organisms can speed up the breakdown process. This review focuses on enzymatic removal of hazardous pollutants and assesses current findings and future plans.
Industrialization and other anthropogenic human activities pose significant environmental risks. As a result of the hazardous pollution, numerous living organisms may suffer from undesirable diseases in their separate habitats. Bioremediation, which removes hazardous compounds from the environment using microbes or their biologically active metabolites, is one of the most successful remediation approaches. According to the United Nations Environment Program (UNEP), deteriorating soil health negatively impacts food security and human health over time. Soil health restoration is critical right now. Microbes are widely known for their importance in cleaning up toxins present in the soil, such as heavy metals, pesticides, and hydrocarbons. However, the capacity of local bacteria to digest these pollutants is limited, and the process takes an extended time. Genetically modified organisms (GMOs), whose altered metabolic pathways promote the over-secretion of a variety of proteins favorable to the bioremediation process, can speed up the breakdown process. The need for remediation procedures, degrees of soil contamination, site circumstances, broad adoptions, and numerous possibilities occurring at various cleaning stages are all studied in detail. Massive efforts to restore contaminated soils have also resulted in severe issues. This review focuses on the enzymatic removal of hazardous pollutants from the environment, such as pesticides, heavy metals, dyes, and plastics. There are also in-depth assessments of present discoveries and future plans for efficient enzymatic degradation of hazardous pollutants.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据