4.7 Article

Hydrophobization of aerogels based on chitosan, nanocellulose and tannic acid: Improvements on the aerogel features and the adsorption of contaminants in water

期刊

ENVIRONMENTAL RESEARCH
卷 220, 期 -, 页码 -

出版社

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.envres.2022.115197

关键词

Chitosan aerogel; Cellulose nanocrystals; Tannic acid; Adsorption; Emerging contaminants

向作者/读者索取更多资源

In this study, highly hydrophobic chitosan beads were prepared as adsorbents for removing organic contaminants from water. The chitosan beads exhibited high porosity, large pore space, and excellent hydrophobicity. The beads showed efficient adsorption capacities for sildenafil citrate, basic blue 26 dye, and cetylpyridinium chloride, and were also effective in fixed-bed experiments.
Hydrophobic chitosan aerogels are promising adsorbents for immiscible contaminants such as oils and organic solvents. However, few studies have reported the application of hydrophobic aerogels as adsorbent for organic contaminants dissolved in water. Herein, novel highly hydrophobic chitosan (CS) beads containing cellulose nanocrystals (CNC) and hydrophobized tannic acid (HTA) composite were prepared with different CS and CNC-HTA content to achieve an optimized adsorbent to remove emerging contaminants from water in batch and fixed-bed assays. The CS@CNC-HTA beads properties were assessed by FTIR, XRD, SEM, XPS, Micro-CT, WCA, and zeta potential. Supramolecular interactions and physical interlacements between CS and CNC-HTA enabled the formation of CS@CNC-HTA beads with high porosity (98.6%), great volume of open pore space (10.16 mm3) and hydrophobicity (121.8 degrees). The 1:1 CS@CNC-HTA beads showed the best performance for removing the pharmaceutical sildenafil citrate, the basic blue 26 dye, and the surfactant cetylpyridinium chloride, reaching adsorption capacities of 86 (73%), 375 (84%), and 390 (90%) mg.g- 1, respectively. The 1:1 CS@CNC-HTA beads efficiently removed sildenafil citrate, basic blue 26 and cetylpyridinium chloride in fixed-bed experiments with exhaustion times of 890, 300, and 470 min, respectively. Theoretical calculations and adsorption assays indicate that the main attractive interactions are pyridinium-pi, pi-pi, electrostatic and hydrophobic.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据