4.7 Article

Metal tolerance mechanisms in plants and microbe-mediated bioremediation

期刊

ENVIRONMENTAL RESEARCH
卷 222, 期 -, 页码 -

出版社

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.envres.2023.115413

关键词

Heavy metal pollution; Metal tolerance; Signaling mechanisms; Hyperaccumulator; Plant -microbe interaction

向作者/读者索取更多资源

Heavy metal contamination is a significant constraint to plant quality and yield, and counteracting it requires complex mechanisms at various levels. Both essential and non-essential elements have harmful impacts on plants, leading to reduced biomass production, growth inhibition, and even plant death. Understanding metal toxicity, stress, and tolerance mechanisms is crucial for developing environmentally friendly bioremediation techniques.
The heavy metal contamination, which causes toxic effects on plants, has evolved into a significant constraint to plant quality and yield. This scenario has been exacerbated by booming population expansion and intrinsic food insecurity. Numerous studies have found that counteracting heavy metal tolerance and accumulation necessitates complex mechanisms at the biochemical, molecular, tissue, cellular and whole plant levels, which may demonstrate increased crop yields. Essential and non-essential elements have similar harmful impacts on plants including reduced biomass production, growth and photosynthesis inhibition, chlorosis, altered fluid balance and nutrient absorption, as well as senescence, all of which led to plant death. Notable biotechnological strategies for effective remediation require knowledge of metal stress and tolerance mechanisms in plants. Assimilation, cooperation and integration, of biotechnological improvements, are required for adequate environmental rehabilitation in the emerging area of bioremediation. This review emphasizes a deeper understanding of metal toxicity, stress, and potential tolerance mechanisms in plants exposed to metal stress. The microbe-mediated metal toxic effects and stress mitigation knowledge can be used to create a new strategic plan as feasible, sustainable, and environmentally friendly bioremediation techniques.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据