4.7 Article

Probe-impregnated monolithic polymer as a robust solid-state colorimetric chemosensor for selective sensing of Hg2+ in environmental water and cigarette samples

期刊

ENVIRONMENTAL RESEARCH
卷 220, 期 -, 页码 -

出版社

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.envres.2023.115210

关键词

Mesoporous; Polymer; Monolith; Probe; Opto-chemosensor; Mercury

向作者/读者索取更多资源

The current study developed a portable solid-state opto-sensor for selective and sensitive detection of ultra-trace Hg2+ ions in water samples. The sensor was fabricated by impregnating a chromoionophoric probe onto a porous polymer framework, serving as an efficient platform for regenerative sensing. The sensor exhibited superior color shift and had a broad linear response range, low detection limit, and reusability potential.
The current study developed a novel aqua-compatible and naked-eye portable solid-state opto-sensor for selective and sensitive detection of ultra-trace Hg2+ ions. The developed chemosensor was fabricated by the direct impregnation of a chromoionophoric probe composed of 2,3-bis((4-isopropylbenzylidene)amino)maleonitrile (PDPM) onto the surface of structurally tailored porous polymer monolithic framework. The template exhibited a highly porous network with greater surface area, which led to the effective anchoring of probe molecules onto the surface of the polymer template, thus serving as an efficient platform to constitute a regenerative solid-state chemosensor. The sensor rendered a superior color shift from dull white to dijon yellow after complexing with Hg2+. The surface, structural, and morphological aspects of the sensor were evaluated using FE-SEM, HR-TEM, EDAX, SAED, p-XRD, N-2 adsorption isotherm, and XPS. Rigorous optimization of the effects of different analytical parameters on the sensing performance of the PDPM sensor material was ensured. The monolithic sensor had an optimum sensing performance at pH 8.0, rapid signal response kinetics of 60s and a broad linear response range of 0.5-150.0 mu g/L with a 0.22 mu g/L detection limit. Furthermore, the sensor was also tolerant of foreign matrix constituents, thereby enabling it to be highly selective in detecting Hg2+. Sensor recovery was analyzed to be possible via Hg2+ desorption using 0.01 M EDTA without compromising its sensing performance. It had reutilization potential for up to eight regenerative cycles with excellent data reliability (recovery >= 99.4% and RSD <= 1.4%). The practicability of the fabricated sensor was investigated using various water and cigarette samples. Experimental data revealed that the developed chromoionophoric sensor was reusable, eco-friendly, low-cost, and possessed superior sensing capabilities, making it more feasible for on-site analysis of environmental samples. The designed sensor has the potential for further investigations and applications as a sensor kit for facilitating heavy metal detection in remote places.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据