4.7 Article

Viability and transcriptional responses of multidrug resistant E. coli to chromium stress

期刊

ENVIRONMENTAL POLLUTION
卷 324, 期 -, 页码 -

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.envpol.2023.121346

关键词

Multidrug-resistant Escherichia coli; Viability; Hexavalent chromium; Efflux pump; Methyltransferase

向作者/读者索取更多资源

This study reveals that multidrug resistant (MDR) bacterial strains have a higher viability and different gene expression patterns compared to susceptible strains under hexavalent chromium (Cr(VI) stress. The MDR strain showed higher bacteriostatic rates and lower levels of reactive oxygen species compared to the susceptible strain. Moreover, the MDR strain also exhibited higher expression levels of antibiotic resistance genes and other related genes.
The viability of multidrug resistant (MDR) bacteria in environment is critical for the spread of antimicrobial resistance. In this study, two Escherichia coli strains, MDR LM13 and susceptible ATCC25922, were used to elucidate differences in their viability and transcriptional responses to hexavalent chromium (Cr(VI)) stress. The results show that the viability of LM13 was notably higher than that of ATCC25922 under 2-20 mg/L Cr(VI) exposure with bacteriostatic rates of 3.1%-57%, respectively, for LM13 and 0.9%-93.1%, respectively, for ATCC25922. The levels of reactive oxygen species and superoxide dismutase in ATCC25922 were much higher than those in LM13 under Cr(VI) exposure. Additionally, 514 and 765 differentially expressed genes were identified from the transcriptomes of the two strains (log2|FC| > 1, p < 0.05). Among them, 134 up-regulated genes were enriched in LM13 in response to external pressure, but only 48 genes were annotated in ATCC25922. Furthermore, the expression levels of antibiotic resistance genes, insertion sequences, DNA and RNA methyltransferases, and toxin-antitoxin systems were generally higher in LM13 than in ATCC25922. This work shows that MDR LM13 has a stronger viability under Cr(VI) stress, and therefore may promote the dissemination of MDR bacteria in environment.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据