4.6 Article

Biodegradation of low-density polyethylene (LDPE) through application of indigenous strain Alcaligenes faecalis ISJ128

期刊

出版社

SPRINGER
DOI: 10.1007/s10653-023-01590-z

关键词

Polyethylene; Biodegradation; SEM; FTIR; Biofilm

向作者/读者索取更多资源

The resiliency of plastic products against microbial degradation in natural environment often creates devastating changes for humans, plants, and animals on the earth's surface. Biodegradation of plastics using indigenous bacteria may serve as a critical approach to overcome this resulting environmental stress. A polyethylene degrading bacterium Alcaligenes faecalis strain ISJ128 was isolated from partially degraded polyethylene film buried in the soil at a plastic waste disposal site. The bacterium demonstrated high growth response and viability on polyethylene film, indicating its suitability for polyethylene degradation. Significant degradation of polyethylene film was observed within a short period of time, accompanied by changes in surface structure and functional groups. The stable nature of the bacterial strain reflects its potential as a degrader for eco-friendly disposal of polyethylene waste.
The resiliency of plastic products against microbial degradation in natural environment often creates devastating changes for humans, plants, and animals on the earth's surface. Biodegradation of plastics using indigenous bacteria may serve as a critical approach to overcome this resulting environmental stress. In the present work, a polyethylene degrading bacterium Alcaligenes faecalis strain ISJ128 (Accession No. MK968769) was isolated from partially degraded polyethylene film buried in the soil at plastic waste disposal site. The biodegradation studies were conducted by employing various methods such as hydrophobicity assessment of the strain ISJ128, measurement of viability and total protein content of bacterial biofilm attached to the polyethylene surface. The proliferation of bacterial cells on polyethylene film, as indicated by high growth response in terms of protein content (85.50 mu g mL(-1)) and viability (10(10) CFU mL(-1)), proposed reasonable suitability of our strain A. faecalis ISJ128 toward polyethylene degradation. The results of biodegradation assay revealed significant degradation (10.40%) of polyethylene film within a short period of time (i.e., 60 days), whereas no signs of degradation were seen in control PE film. A. faecalis strain ISJ128 also demonstrated a removal rate of 0.0018 day(-1) along with half-life of 462 days. The scanning electron microscope (SEM) and Fourier transform infrared (FTIR) spectroscopy studies not only displayed changes on polyethylene surface but also altered level of intensity of functional groups and an increase in the carbonyl indexes justifying the degradation of polyethylene film due to bacterial activity. In addition, the secondary structure prediction (M fold software) of 16SrDNA proved the stable nature of the bacterial strain, thereby reflecting the profound scope of A. faecalis strain ISJ128 as a potential degrader for the eco-friendly disposal of polyethylene waste. [GRAPHICS] .

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据