4.7 Article

From time-series to 2D images for building occupancy prediction using deep transfer learning

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.engappai.2022.105786

关键词

Occupancy detection; Environmental data; Feature engineering; Image transformation; Deep learning; Convolutional neural network

向作者/读者索取更多资源

This paper presents an innovative non-intrusive occupancy detection approach using environmental sensor data, which can aid in energy preservation while maintaining end-user comfort level.
Building occupancy information could aid energy preservation while simultaneously maintaining the end-user comfort level. Energy conservation becomes essential since energy resources are scarce and human dependency on appliances is only exponentially increasing. While intrusive sensors (i.e., cameras and microphones) can raise privacy concerns, this paper presents an innovative non-intrusive occupancy detection approach using environmental sensor data (e.g., temperature, humidity, carbon dioxide (CO2), and light sensors). The proposed scheme transforms multivariate time-series data into images for better encoding and extracting relevant features. The utilized image transformation method is based on data normalization and matrix conversion. Precisely, by representing time-series in 2D space, an encoding kernel can move in two directions while it can move only in one direction when applied to a 1D signal. Moreover, machine learning (ML) and deep learning (DL) techniques are utilized to classify occupancy patterns. Several simulations are used to evaluate the approach; mainly, we investigated pre-trained and custom convolutional neural network (CNN) models. The latter attained an accuracy of 99.00%. Additionally, pixel data are extracted from the generated images and subjected to traditional ML methods. Throughout the numerous comparison settings, it was observed that the latter strategy provided the optimal balance of 99.42% accuracy performance and minimal training time across the occupancy datasets.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据