4.7 Article

Efficient direct solar-driven thermochemical energy storage of (AlMgFeMn) OxCaCO3 pellets in a fluidized bed reactor

期刊

ENERGY CONVERSION AND MANAGEMENT
卷 285, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.enconman.2023.116990

关键词

Calcium looping; Thermochemical energy storage; Concentrated solar power; Operando fluidized thermogravimetric analysis; Cyclic performance

向作者/读者索取更多资源

This paper demonstrates highly efficient and stable direct solar-driven thermochemical energy storage in fluidized reactors using (AlMgFeMn)OxCaCO3 pellets. The pellets showed excellent long-term stability and improved solar-thermal conversion efficiency compared to white (AlMg)OxCaCO3 pellets. The presence of poly-oxide (AlMgFeMn)Ox crystals and steam played a positive role in enhancing reaction kinetics and stability.
Calcium looping (CaL) is one of the most promising thermochemical energy storage technologies for high-temperature applications such as next-generation concentrated solar power (CSP) systems. However, most previous investigations have mainly focused on optimizing Calcium-based materials to maintain their reactivity during cycling, while their behavior in reactors under direct solar irradiation has rarely been reported. In this paper, highly efficient and stable direct solar-driven thermochemical energy storage in fluidized reactors is demonstrated. (AlMgFeMn)OxCaCO3 pellets demonstrated excellent long-term stability with an energy storage density of more than 85% of the initial value after 100 cycles. The underlying mechanism can be attributed to the presence of poly-oxide (AlMgFeMn)Ox crystals, which prevent crystallite growth and sintering, as confirmed by in-situ X-ray diffraction analysis. Moreover, the solar-thermal conversion efficiency of (AlMgFeMn)OxCaCO3 pellets in fluidized bed reactors is significantly improved from 9% to 19% thanks to the considerably increased average solar absorptance and fast reaction kinetics over white (AlMg)OxCaCO3 pellets. The experimental analysis using an operando fluidized thermogravimetric analyzer (F-TGA) further revealed that the interparticle diffusion control limitation in traditional TGA or fixed bed and localized overheating due to Gaussian distri-bution of solar irradiation are successfully relieved in a fluidized bed. We further suggest that steam has a positive effect on enhancing reaction kinetics and stability by performing 10 energy storage/release cycles of (AlMgFeMn)OxCaCO3 pellets under direct irradiation of concentrated light due to the increase of surface area after rehydration and the higher OH reactivity toward CaO. This work paves the way for the application of solar-driven fluidized bed reactors for scalable thermochemical energy storage.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据