4.7 Article

Boosted GRU model for short-term forecasting of wind power with feature-weighted principal component analysis

期刊

ENERGY
卷 267, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.energy.2022.126503

关键词

feature -Weighted; Principal component analysis; Particle swarm optimization; Gated recurrent neural network; Wind power forecasting

向作者/读者索取更多资源

Wind power is a clean and widely used renewable energy source. Accurate forecasting is important for efficient and stable utilization of wind energy. Extracting features from complex wind power data can improve prediction models, which is a key issue for short-term forecasting.
Wind power is a clean resource that is widely used as a renewable energy source. Accurate wind power forecasting is important for the efficient and stable use of wind energy. The erratic stochastic nature of wind power generation and the complexity of the data pose a significant challenge for short-term forecasting. Extracting features from the complex wind power data can improve the prediction models, which is a key issue for shortterm forecasting. In this paper, a feature-weighted principal component analysis (WPCA) method and an improved gated recurrent unit (GRU) neural network model with optimized hyperparameters using a particle swarm optimization (PSO) algorithm are proposed. Compared with other good machine learning models, the proposed hybrid WPCA-PSO-GRU model is used to perform power prediction for a real-world wind farm. The results show that the MAE and RMSE of the WPCA-PSO-GRU model are reduced by 5.3%-16% and 10%-16% respectively, and R2 is increased by 2.1%-3.1% compared to the conventional model. The proposed model can reduce the impact of noisy data on model training, randomness, and the volatility of wind power generation. This study can also have wide applicability with complex data samples.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据