4.5 Article

A Hybrid Chaotic-Based Multiobjective Differential Evolution Technique for Economic Emission Dispatch Problem

期刊

ENERGIES
卷 16, 期 12, 页码 -

出版社

MDPI
DOI: 10.3390/en16124554

关键词

chaotic maps; differential evolution; multiobjective optimization; Pareto front; power dispatch problem

向作者/读者索取更多资源

This study proposes a new multiobjective optimization technique combining the differential evolution algorithm and chaos theory to solve the nonconvex and nonsmooth economic emission dispatch problem. The technique extracts an accurate Pareto front and overcomes the limitations of local optima and the conventional DE algorithm. A slack TGU is defined to handle the power balance constraint, and the proposed technique optimizes the thermal units to achieve the optimization objectives.
The economic emission dispatch problem (EEDP) is a nonconvex and nonsmooth multiobjective optimization problem in the power system field. Generally, fuel cost and total emissions of harmful gases are the problem objective functions. The EEDP decision variables are output powers of thermal generating units (TGUs). To make the EEDP problem more practical, valve point loading effects (VPLEs), prohibited operation zones (POZs), and power balance constraints should be included in the problem constraints. In order to solve this complex and constrained EEDP, a new multiobjective optimization technique combining the differential evolution (DE) algorithm and chaos theory is proposed in this study. In this new multiobjective optimization technique, a nondomination sorting principle and a crowding distance calculation are employed to extract an accurate Pareto front. To avoid being trapped in local optima and enhance the conventional DE algorithm, two different chaotic maps are used in its initialization, crossover, and mutation phases instead of random numbers. To overcome difficulties caused by the equality constraint describing the power balance constraint, a slack TGU is defined to compensate for the gap between the total generation and the sum of the system load and total power losses. Then, the optimal power outputs of all thermal units except the slack unit are determined by the suggested optimization technique. To assess the effectiveness and applicability of the proposed method for solving the EEDP, the six-unit and ten-unit systems are used. Moreover, obtained results are compared with other new optimization techniques already developed and tested for the same purpose. The superior performance of the ChMODE is also evaluated by using various metrics such as inverted generational distance (IGD), hyper-volume (HV), spacing metric (SM), and the average satisfactory degree (ASD).

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据