4.5 Article

Advanced Method of Variable Refrigerant Flow (VRF) System Design to Forecast on Site Operation-Part 3: Optimal Solutions to Minimize Sizes

期刊

ENERGIES
卷 16, 期 5, 页码 -

出版社

MDPI
DOI: 10.3390/en16052417

关键词

air conditioning system; load range; refrigeration capacity excess; threshold temperature; level of loading

向作者/读者索取更多资源

By determining the optimal refrigeration capacity and providing the maximum annual refrigeration energy generation, the design of air conditioning systems can be optimized to achieve maximum energy efficiency.
Outdoor air conditioning systems (ACS) are used as autonomic systems as well as in combined outdoor and indoor ACS of the variable refrigerant flow (VRF) type, with variable speed compressors (VSC) as their advanced version. Methods for determining the optimal value of refrigeration capacity and providing the maximum rate of the summarized annual refrigeration energy generation increment, according to its needs at minimum compressor sizes and rational values, are applied to reveal the reserves for reducing the designed (installed) refrigeration capacity, thus enabling us to practically achieve maximum annual refrigeration energy generation as the primary criterion at the second stage of the general design methodology previously developed by the authors. The principle of sharing the total thermal load on the ACS between the ranges of changeable loads for outdoor air precooling, and a relatively stable load range for further processing air are used as its basis. According to this principle, the changeable thermal load range is chosen as the object for energy saving by recuperating the excessive refrigeration generated at lowered loading in order to compensate for the increased loads, thereby matching actual duties at a reduced designed refrigeration capacity. The method allows us to determine the corresponding level of regulated loads (LRL) of SRC and the load range of compressor operation to minimize sizes.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据