4.5 Article

Evaluation of Slag Foaming Behavior Using Renewable Carbon Sources in Electric Arc Furnace-Based Steel Production

期刊

ENERGIES
卷 16, 期 12, 页码 -

出版社

MDPI
DOI: 10.3390/en16124673

关键词

electric arc furnace; slag foaming; carbon sources; biochar; steelmaking

向作者/读者索取更多资源

The influence of different carbon sources on slag foaming behavior was studied, and the effect was evaluated using various methods. Biochar showed inferior foaming characteristics compared to other carbon sources. However, when a mixture of coke and biochar was used, the slag foaming process improved and showed similar characteristics to conventional carbon sources. Differences in the presence of crystalline phases were observed in the slag foam, and a layer between the foam slag and the crucible wall was found in many samples.
The influence of different carbon sources, including anthracite, calcined petroleum coke, three samples of high-temperature coke, biochar, and a mixture of 50 wt.% biochar and 50 wt.% coke, on slag foaming behavior was studied. The slag's composition was set to FeO-CaO-Al2O3-MgO-SiO2, and the temperature for slag foaming was 1600 & DEG;C. The effect of the carbon sources was evaluated using foaming characteristics (foam height, foam volume, relative foaming height, and gas fraction), X-ray diffraction (XRD), chemical analysis of the slag foams, Mossbauer spectroscopy, observation by scanning electron microscope (SEM), and energy-dispersive spectroscopy (EDS) mapping. Different foaming phenomena were found among conventional sources, biochar as a single source, and the mixture of coke and biochar. Biochar showed the most inferior foaming characteristics compared to the other studied carbon sources. Nevertheless, the slag foaming process was improved and showed slag foaming characteristics similar to results obtained using conventional carbon sources when the mixture of 50 wt.% coke and 50 wt.% biochar was used. The XRD analysis revealed a difference between the top and bottom of the slag foams. In almost all cases, a maghemite crystalline phase was detected at the top of the slag foams, indicating oxidation; metallic iron was found at the bottom. Furthermore, a difference in the slag foam (mixture of coke and biochar) was found in the presence of such crystalline phases as magnesium iron oxide (Fe2MgO4) and magnetite (Mg-0.Fe-4(2).O-96(4)). Notwithstanding the carbon source applied, a layer between the foam slag and the crucible wall was found in many samples. Based on the SEM/EDS and XRD results, it was assumed this layer consists of gehlenite (Ca-2(Al(AlSi)O-7) and two spinels: magnesium aluminate (MgAl2O4) and magnesium iron oxide (Fe2MgO4).

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据