4.7 Review

The heterogeneous transition state of resistance to RET kinase inhibitors converges on ERK1/2-driven Aurora A/B kinases

期刊

DRUG RESISTANCE UPDATES
卷 68, 期 -, 页码 -

出版社

CHURCHILL LIVINGSTONE
DOI: 10.1016/j.drup.2023.100958

关键词

Protein kinases; Therapy resistance; Residual tumors; RET; ERK1; 2; Aurora; Targeted therapy

向作者/读者索取更多资源

The aim of this study is to characterize the cancer cells that persist under continuous RET TKI treatment and identify the shared vulnerability of these cells. The results showed that MEK1/2 and Aurora kinase inhibitors were the most effective drugs when combined with a RET kinase inhibitor, leading to regression of the residual tumors.
Aim: While most patients with RET-altered cancer responded to the RET protein tyrosine kinase inhibitors (TKIs) pralsetinib (BLU667) and selpercatinib (LOXO292), few achieved a complete response. Heterogeneity in residual tumors makes it difficult to target their diverse genetic alterations individually. The aim of this study is to characterize the cancer cells that persist under continuous RET TKI treatment and identify the shared vulnerability of these cells.Methods: We analyzed residual RET-altered cancer cells under prolonged RET TKI treatment by whole exome sequencing (WES), RNA-seq analysis, and drug-sensitivity screening. These were followed by tumor xenograft experiments of mono- and combinational drug treatments.Results: BLU667- and LOXO292-tolerated persisters were cellularly heterogeneous, contained slowly proliferating cells, regained low levels of active ERK1/2, and displayed plasticity in growth rate, which we designated as in the transition state of resistance (TSR). TSR cells were genetically heterogeneous. Aurora A/B kinases were among the most significantly upregulated genes and that the MAPK pathway activity had significantly higher transcript footprints. MEK1/2 and Aurora kinase inhibitors were the most effective drugs when combined with a RET kinase inhibitor. In a TSR tumor model, combination of BLU667 with an Aurora kinase or a MEK1/2 kinase inhibitor caused TSR tumor regression.Conclusion: Our experiments reveal that the heterogeneous TSR cancer cells under continuous RET TKI treatment converge on the targetable ERK1/2-driven Aurora A/B kinases. The discovery of the targetable convergent point in the genetically heterogeneous TSR points to an effective combination therapy approach to eliminate the residual tumors.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据