4.7 Article

In Primary Aldosteronism, Mineralocorticoids Influence Exosomal Sodium-Chloride Cotransporter Abundance

期刊

出版社

AMER SOC NEPHROLOGY
DOI: 10.1681/ASN.2015111221

关键词

-

资金

  1. Princess Alexandra Hospital Research Foundation
  2. Danish Council for Independent Research, Natural Sciences [DFF-4002-00364]
  3. Lundbeck Foundation
  4. Lundbeck Foundation [R173-2014-1373] Funding Source: researchfish
  5. Novo Nordisk Fonden [NNF15OC0016342] Funding Source: researchfish

向作者/读者索取更多资源

Distal tubular sodium retention is a potent driver of hypertension, and the thiazide-sensitive sodium-chloride cotransporter (NCC) has a key role in this process. In humans, factors regulating NCC are unclear, but in animal models, aldosterone is a potent regulator, possibly via effects on plasma potassium. We studied the effects of the mineralocorticoid fludrocortisone on the abundance of NCC and its phosphorylated form (pNCC) as well as WNK lysine deficient protein kinase 4 (WNK4) and STE20/SPS1-related, proline alanine-rich kinase (SPAK) in human urinary exosomes. We isolated exosomes from daily urine samples in 25 patients undergoing fludrocortisone suppression testing (100 mu g every 6 hours for 4 days) to diagnose or exclude primary aldosteronism. Over the course of the test, NCC levels increased 3.68-fold (P<0.01) and pNCC levels increased 2.73-fold (P<0.01) relative to baseline. The ratio of pNCC/NCC dropped by 48% (P<0.01). The abundance of WNK4 increased 3.23-fold (P<0.01), but SPAK abundance did not change significantly (P=0.14). Plasma potassium concentration strongly and negatively correlated with pNCC, NCC, and WNK4 abundance (P<0.001 for all). This study shows that, in humans, mineralocorticoid administration is associated with a rapid increase in abundance of NCC and pNCC, possibly via the WNK pathway. These effects may be driven by changes in plasma potassium.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据