4.2 Review

Diverse and dynamic forms of gene regulation by the S. cerevisiae histone methyltransferase Set1

期刊

CURRENT GENETICS
卷 69, 期 2-3, 页码 91-114

出版社

SPRINGER
DOI: 10.1007/s00294-023-01265-3

关键词

Histone H3; Chromatin; Methyltransferase

向作者/读者索取更多资源

Gene transcription is an essential and highly regulated process. The structural organization of nucleosomes with DNA wrapped around histone proteins impedes transcription. Chromatin remodelers, transcription factors, co-activators, and histone-modifying enzymes work together to make DNA accessible to RNA polymerase. Histone lysine methylation can positively or negatively regulate gene transcription.
Gene transcription is an essential and highly regulated process. In eukaryotic cells, the structural organization of nucleosomes with DNA wrapped around histone proteins impedes transcription. Chromatin remodelers, transcription factors, co-activators, and histone-modifying enzymes work together to make DNA accessible to RNA polymerase. Histone lysine methylation can positively or negatively regulate gene transcription. Methylation of histone 3 lysine 4 by SET-domain-containing proteins is evolutionarily conserved from yeast to humans. In higher eukaryotes, mutations in SET-domain proteins are associated with defects in the development and segmentation of embryos, skeletal and muscle development, and diseases, including several leukemias. Since histone methyltransferases are evolutionarily conserved, the mechanisms of gene regulation mediated by these enzymes are also conserved. Budding yeast Saccharomyces cerevisiae is an excellent model system to study the impact of histone 3 lysine 4 (H3K4) methylation on eukaryotic gene regulation. Unlike larger eukaryotes, yeast cells have only one enzyme that catalyzes H3K4 methylation, Set1. In this review, we summarize current knowledge about the impact of Set1-catalyzed H3K4 methylation on gene transcription in S. cerevisiae. We describe the COMPASS complex, factors that influence H3K4 methylation, and the roles of Set1 in gene silencing at telomeres and heterochromatin, as well as repression and activation at euchromatic loci. We also discuss proteins that read H3K4 methyl marks to regulate transcription and summarize alternate functions for Set1 beyond H3K4 methylation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据