4.5 Review

Unoccupied aerial systems imagery for phenotyping in cotton, maize, soybean, and wheat breeding

期刊

CROP SCIENCE
卷 -, 期 -, 页码 -

出版社

WILEY
DOI: 10.1002/csc2.21028

关键词

-

类别

向作者/读者索取更多资源

High-throughput phenotyping (HTP) using unmanned aerial systems (UAS) is a promising tool for plant breeding and research. This review focuses on the application of UAS-collected data in cotton, maize, soybean, and wheat, illustrating how it can automate and improve estimation of phenotypic traits. The potential applications include measuring abiotic and biotic stress, crop growth and development, and productivity.
High-throughput phenotyping (HTP) with unoccupied aerial systems (UAS), consisting of unoccupied aerial vehicles (UAV; or drones) and sensor(s), is an increasingly promising tool for plant breeders and researchers. Enthusiasm and opportunities from this technology for plant breeding are similar to the emergence of genomic tools & SIM;30 years ago, and genomic selection more recently. Unlike genomic tools, HTP provides a variety of strategies in implementation and utilization that generate big data on the dynamic nature of plant growth formed by temporal interactions between growth and environment. This review lays out strategies deployed across four major staple crop species: cotton (Gossypium hirsutum L.), maize (Zea mays L.), soybean (Glycine max L.), and wheat (Triticum aestivum L.). Each crop highlighted in this review demonstrates how UAS-collected data are employed to automate and improve estimation or prediction of objective phenotypic traits. Each crop section includes four major topics: (a) phenotyping of routine traits, (b) phenotyping of previously infeasible traits, (c) sample cases of UAS application in breeding, and (d) implementation of phenotypic and phenomic prediction and selection. While phenotyping of routine agronomic and productivity traits brings advantages in time and resource optimization, the most potentially beneficial application of UAS data is in collecting traits that were previously difficult or impossible to quantify, improving selection efficiency of important phenotypes. In brief, UAS sensor technology can be used for measuring abiotic stress, biotic stress, crop growth and development, as well as productivity. These applications and the potential implementation of machine learning strategies allow for improved prediction, selection, and efficiency within breeding programs, making UAS HTP a potentially indispensable asset.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据