4.7 Article

Improved fast iterative method for higher calculation accuracy of traveltimes

期刊

COMPUTERS & GEOSCIENCES
卷 174, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.cageo.2023.105331

关键词

Fast iterative method; Higher-order finite difference; Diagonal node difference calculation; Double-grid technique

向作者/读者索取更多资源

This paper proposes a new algorithm for FIM, which utilizes second-order and mixed-order difference schemes under the parallel computing structure. It effectively improves the calculation accuracy of traveltimes while maintaining the original computational efficiency. Improved finite difference calculation in the diagonal direction of square grids and the double-grid technique near the source are applied to further reduce overall calculation error.
Fast Iterative Method (FIM), a grid-based ray-tracing algorithm, has a computational efficiency far exceeding that of conventional fast marching method (FMM) in serial computing, because it adopts an iterative algorithm and can be calculated in parallel. However, the finite difference scheme of the FIM only employs the first -order Godunov upwind finite difference scheme, resulting in low calculation accuracy of arrival traveltimes. This paper proposes a new algorithm of FIM, which utilizes second-order and mixed-order difference schemes under the parallel computing structure, effectively improves the calculation accuracy of traveltimes, and basically maintains the original computational efficiency. Especially, improved finite difference calculation in the diagonal direction of square grids and the double-grid technique near the source are applied to further reduce overall calculation error. Numerical experiments show that for the given model, the calculation error can be reduced from 2 ms of the original FIM calculation to 0.05 ms, and the calculation accuracy is increased by 40 times, while the time consumption increases only 27%.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据