4.7 Article

Context-aware learning of hierarchies of low-fidelity models for multi-fidelity uncertainty quantification

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.cma.2023.115908

关键词

Context -aware learning; Multi -fidelity Monte Carlo; Model reduction; Nuclear fusion; Scientific machine learning

向作者/读者索取更多资源

Multi-fidelity Monte Carlo methods leverage low-fidelity and surrogate models for variance reduction to make uncertainty quantification tractable. This work proposes a context-aware multi-fidelity Monte Carlo method that optimizes the balance between training costs and sampling costs. The method applies to hierarchies of different types of low-fidelity models and allows for optimal trade-offs between training and sampling to minimize mean-squared errors of estimators.
Multi-fidelity Monte Carlo methods leverage low-fidelity and surrogate models for variance reduction to make tractable uncertainty quantification even when numerically simulating the physical systems of interest with high-fidelity models is computationally expensive. This work proposes a context-aware multi-fidelity Monte Carlo method that optimally balances the costs of training low-fidelity models with the costs of Monte Carlo sampling. It generalizes the previously developed context -aware bi-fidelity Monte Carlo method to hierarchies of multiple models and to more general types of low-fidelity models. When training low-fidelity models, the proposed approach takes into account the context in which the learned low-fidelity models will be used, namely for variance reduction in Monte Carlo estimation, which allows it to find optimal trade-offs between training and sampling to minimize upper bounds of the mean-squared errors of the estimators for given computational budgets. This is in stark contrast to traditional surrogate modeling and model reduction techniques that construct low-fidelity models with the primary goal of approximating well the high-fidelity model outputs and typically ignore the context in which the learned models will be used in upstream tasks. The proposed context-aware multi-fidelity Monte Carlo method applies to hierarchies of a wide range of types of low-fidelity models such as sparse-grid and deep-network models. Numerical experiments with the gyrokinetic simulation code GENE show speedups of up to two orders of magnitude compared to standard estimators when quantifying uncertainties in small-scale fluctuations in confined plasma in fusion reactors. This corresponds to a runtime reduction from 72 days to four hours on one node of the Lonestar6 supercomputer at the Texas Advanced Computing Center.(c) 2023 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据