4.5 Article

Graph neural networks predict energetic and mechanical properties for models of solid solution metal alloy phases

期刊

COMPUTATIONAL MATERIALS SCIENCE
卷 224, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.commatsci.2023.112141

关键词

Solid solution alloys; Condensed matter; Bulk modulus; Deep learning; Graph neural networks

向作者/读者索取更多资源

We developed HydraGNN, a PyTorch-based architecture, which utilizes graph convolutional neural networks (GCNNs) to predict the formation energy and bulk modulus of solid solution alloy models with different atomic crystal structures and relaxed volumes. The GCNN surrogate model was trained using a dataset for nickel-niobium (NiNb) generated by the embedded atom model (EAM) empirical interatomic potential for demonstration purposes. The dataset was generated by calculating the formation energy and bulk modulus for optimized geometries starting from initial body-centered cubic (BCC), face-centered cubic (FCC), and hexagonal compact packed (HCP) crystal structures, covering the possible compositional range for each structure type. Numerical results demonstrate that the GCNN model effectively predicts the formation energy and bulk modulus based on the optimized crystal structure, relaxed volume, and configurational entropy of the solid solution alloy models.
We developed a PyTorch-based architecture called HydraGNN that implements graph convolutional neural networks (GCNNs) to predict the formation energy and the bulk modulus for models of solid solution alloys for various atomic crystal structures and relaxed volumes. We trained the GCNN surrogate model on a dataset for nickel-niobium (NiNb) generated by the embedded atom model (EAM) empirical interatomic potential for demonstration purposes. The dataset was generated by calculating the formation energy and the bulk modulus as a prototypical elastic property for optimized geometries starting from initial body-centered cubic (BCC), face-centered cubic (FCC), and hexagonal compact packed (HCP) crystal structures, with configurations spanning the possible compositional range for each of the three types of initial crystal structures. Numerical results show that the GCNN model effectively predicts both the formation energy and the bulk modulus as function of the optimized crystal structure, relaxed volume, and configurational entropy of the model structures for solid solution alloys.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据