4.7 Article

BIN1, Myotubularin, and Dynamin-2 Coordinate T-Tubule Growth in Cardiomyocytes

期刊

CIRCULATION RESEARCH
卷 132, 期 11, 页码 E188-E205

出版社

LIPPINCOTT WILLIAMS & WILKINS
DOI: 10.1161/CIRCRESAHA.122.321732

关键词

BIN1; cardiomyocyte; dynamin II; myotubularin; t-tubule

向作者/读者索取更多资源

This study reveals the collaborative roles of BIN1, MTM1, and DNM2 in controlling t-tubule growth in cardiomyocytes, which is crucial for the maturation of cardiomyocyte Ca2+ homeostasis.
Background:Transverse tubules (t-tubules) form gradually in the developing heart, critically enabling maturation of cardiomyocyte Ca2+ homeostasis. The membrane bending and scaffolding protein BIN1 (bridging integrator 1) has been implicated in this process. However, it is unclear which of the various reported BIN1 isoforms are involved, and whether BIN1 function is regulated by its putative binding partners MTM1 (myotubularin), a phosphoinositide 3 '-phosphatase, and DNM2 (dynamin-2), a GTPase believed to mediate membrane fission. Methods:We investigated the roles of BIN1, MTM1, and DNM2 in t-tubule formation in developing mouse cardiomyocytes, and in gene-modified HL-1 and human-induced pluripotent stem cell-derived cardiomyocytes. T-tubules and proteins of interest were imaged by confocal and Airyscan microscopy, and expression patterns were examined by RT-qPCR and Western blotting. Ca2+ release was recorded using Fluo-4. Results:We observed that in the postnatal mouse heart, BIN1 localizes along Z-lines from early developmental stages, consistent with roles in initial budding and scaffolding of t-tubules. T-tubule proliferation and organization were linked to a progressive and parallel increase in 4 detected BIN1 isoforms. All isoforms were observed to induce tubulation in cardiomyocytes but produced t-tubules with differing geometries. BIN1-induced tubulations contained the L-type Ca2+ channel, were colocalized with caveolin-3 and the ryanodine receptor, and effectively triggered Ca2+ release. BIN1 upregulation during development was paralleled by increasing expression of MTM1. Despite no direct binding between MTM1 and murine cardiac BIN1 isoforms, which lack exon 11, high MTM1 levels were necessary for BIN1-induced tubulation, indicating a central role of phosphoinositide homeostasis. In contrast, the developing heart exhibited declining levels of DNM2. Indeed, we observed that high levels of DNM2 are inhibitory for t-tubule formation, although this protein colocalizes with BIN1 along Z-lines, and binds all 4 isoforms. Conclusions:These findings indicate that BIN1, MTM1, and DNM2 have balanced and collaborative roles in controlling t-tubule growth in cardiomyocytes.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据