4.7 Article

Effect of pH, surface charge and soil properties on the solid-solution partitioning of perfluoroalkyl substances (PFASs) in a wide range of temperate soils

期刊

CHEMOSPHERE
卷 321, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.chemosphere.2023.138133

关键词

PFOS; PFOA; Sorption; Binding; Organic matter; Geochemical modeling

向作者/读者索取更多资源

The study investigated the pH-dependent soil-water partitioning of six perfluoroalkyl substances (PFASs) in 11 temperate mineral soils and found that PFAS sorption was positively related to perfluorocarbon chain length and inversely related to solution pH. Organic carbon alone was a poor predictor of PFAS partitioning, and additional factors such as Fe/Al (hydr) oxides and soil texture (silt + clay) played a role. A model based on soil organic matter charge underestimated PFAS sorption. This research highlights the need for further understanding of PFAS behavior and impact in soils.
The pH-dependent soil-water partitioning of six perfluoroalkyl substances (PFASs) of environmental concern (PFOA, PFDA, PFUnDA, PFHxS, PFOS and FOSA), was investigated for 11 temperate mineral soils and related to soil properties such as organic carbon content (0.2-3%), concentrations of Fe and Al (hydr)oxides, and texture. PFAS sorption was positively related to the perfluorocarbon chain length of the molecule, and inversely related to solution pH for all substances. The negative slope between log Kd and pH became steeper with increasing perfluorocarbon chain length of the PFAS (r2 = 0.75, p <= 0.05). Organic carbon (OC) alone was a poor predictor of the partitioning for all PFASs, except for FOSA (r2 = 0.71), and the OC-normalized PFAS partitioning, as derived from organic soil materials, underestimated PFAS sorption to the soils. Multiple linear regression suggested sorption contributions (p <= 0.05) from OC for perfluorooctane sulfonate (PFOS) and FOSA, and Fe/Al (hydr) oxides for PFOS, FOSA, and perfluorodecanoate (PFDA). FOSA was the only substance under study for which there was a statistically significant correlation between its binding and soil texture (silt + clay). To predict PFAS sorption, the surface net charge of the soil organic matter fraction of all soils was calculated using the Stockholm Humic Model. When calibrated against charge-dependent PFAS sorption to a peat (Oe) material, the derived model significantly underestimated the measured Kd values for 10 out of 11 soils. To conclude, additional

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据