4.7 Article

Fabrication of layered In2S3/WS2 heterostructure for enhanced and efficient photocatalytic CO2 reduction and various paraben degradation in water

期刊

CHEMOSPHERE
卷 322, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.chemosphere.2023.138235

关键词

CO2 reduction; WS2 heterostructure; Paraben; Photocatalysis; Degradation

向作者/读者索取更多资源

Due to the excessive use of fossil fuels, CO2 emissions into the environment are increasing. An efficient method of converting CO2 to useful carbonaceous products in the presence of light is one way to address the issues associated with energy and environmental remediation. In2S3/WS2 heterostructure has been fabricated using the efficient hydrothermal method, exhibiting enhanced photocatalytic activity compared to pristine In2S3 and WS2. The synthesized InS/WS heterostructure also showed high efficiency in degrading parabens under visible radiation.
Because of the excessive use of fossil fuels, CO2 emissions into the environment are increasing. An efficient method of converting CO2 to useful carbonaceous products in the presence of light is one way to address the issues associated with energy and environmental remediation. In2S3/WS2 heterostructure has been fabricated using the efficient hydrothermal method. The results of structural, morphological, optical, and photo/electro-chemical characterization confirm the formation of a hierarchical, layered heterostructure of type-II. Enhanced photocatalytic activity is observed in InS/WS heterostructure compared to pristine In2S3 and WS2. InS/WS heterostructure exhibit higher photocatalytic activity than pure In2S3 and WS2. For 12 h, photocatalytic CO2 reduction produces 213.4 and 188.6 mu mol of CO and CH4, respectively. Furthermore, the photocatalytic ability of the synthesized materials to degrade different parabens (Methyl: MPB, Ethyl: EPB, and Benzyl: BPB) under visible radiation was evaluated. Under optimized conditions, the InS/WS heterostructure degraded 88.6, 90.4, and 95.8% of EPB, BPB, and MPB, respectively, in 90 min. The mechanism of photocatalysis was discussed in detail. MCF-7 cell viability was assessed and found to exhibit low mortality in InS/WS treated MPB aqueous solution. InS/WS heterostructure could improve the fabrication of more sulphide-based layered materials to combat environmental pollution.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据